{"title":"无电容DC-DC变换器","authors":"H. Martínez, A. Grau-Saldes","doi":"10.1109/ETFA.2014.7005314","DOIUrl":null,"url":null,"abstract":"Linear-assisted DC/DC converters (or linear-switching hybrid DC/DC converters) consist of a voltage linear regulator (classic NPN or nMOS topologies and LDO) connected in parallel with a switching DC/DC converter. In order to control these hybrid structures, different strategies exist, allowing to fix the switching frequency as a function of some parameters of the linear regulator. This article compares two control strategies that, although can be applied to the same circuital structure of linear-assisted converter, are sensibly different. The first one, reported in previous literature, cancels completely the average current through the linear regulator in steady state to achieve a reduction of the losses. Thus the efficiency of the whole system increases and almost equals the one of the standalone switching converter. The proposed approach, in spite of a slightly increment of linear regulator's losses, reduces the output ripple due to the crossover distortion of linear regulator output stage.","PeriodicalId":20477,"journal":{"name":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Capacitorless DC-DC converter\",\"authors\":\"H. Martínez, A. Grau-Saldes\",\"doi\":\"10.1109/ETFA.2014.7005314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear-assisted DC/DC converters (or linear-switching hybrid DC/DC converters) consist of a voltage linear regulator (classic NPN or nMOS topologies and LDO) connected in parallel with a switching DC/DC converter. In order to control these hybrid structures, different strategies exist, allowing to fix the switching frequency as a function of some parameters of the linear regulator. This article compares two control strategies that, although can be applied to the same circuital structure of linear-assisted converter, are sensibly different. The first one, reported in previous literature, cancels completely the average current through the linear regulator in steady state to achieve a reduction of the losses. Thus the efficiency of the whole system increases and almost equals the one of the standalone switching converter. The proposed approach, in spite of a slightly increment of linear regulator's losses, reduces the output ripple due to the crossover distortion of linear regulator output stage.\",\"PeriodicalId\":20477,\"journal\":{\"name\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2014.7005314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2014.7005314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linear-assisted DC/DC converters (or linear-switching hybrid DC/DC converters) consist of a voltage linear regulator (classic NPN or nMOS topologies and LDO) connected in parallel with a switching DC/DC converter. In order to control these hybrid structures, different strategies exist, allowing to fix the switching frequency as a function of some parameters of the linear regulator. This article compares two control strategies that, although can be applied to the same circuital structure of linear-assisted converter, are sensibly different. The first one, reported in previous literature, cancels completely the average current through the linear regulator in steady state to achieve a reduction of the losses. Thus the efficiency of the whole system increases and almost equals the one of the standalone switching converter. The proposed approach, in spite of a slightly increment of linear regulator's losses, reduces the output ripple due to the crossover distortion of linear regulator output stage.