{"title":"具有成像电位的聚酰亚胺薄膜的制备方法","authors":"Lv Gang, Yang Wei, Mao Danbo, Wu Shibin, Ren Ge","doi":"10.12086/OEE.2021.200381","DOIUrl":null,"url":null,"abstract":"Polyimide (PI) film is widely used in aerospace, microelectronics, and other fields because of its excellent thermal stability and mechanical strength. However, there are very few reports about its application in the direction of optical imaging. To use PI film for imaging, the requirements for the optical homogeneity of the PI film are extremely demanding. The optical homogeneity of the stretch-resistant PI film proposed in this paper with 100 mm diameter and low thermal expansion coefficient meets the Rayleigh criterion, which has the potential for applications in the imaging field. In addition, the tensile strength of this PI is 285 MPa, which is ~2.6 times that of the PMDA-ODA type PI; the coefficient of thermal expansion is about 3.2 ppmK-1, which is comparable to that of the Novastrat®905 type PI and is one order of magnitude lower than that of the commercial PI films. These excellent basic properties reserve more space to further improve the space adaptability of the PI film. The solution of the optical homogeneity of the PI film will lay the foundation for its application in thin film diffractive optical elements.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation method for polyimide films with imaging potential\",\"authors\":\"Lv Gang, Yang Wei, Mao Danbo, Wu Shibin, Ren Ge\",\"doi\":\"10.12086/OEE.2021.200381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyimide (PI) film is widely used in aerospace, microelectronics, and other fields because of its excellent thermal stability and mechanical strength. However, there are very few reports about its application in the direction of optical imaging. To use PI film for imaging, the requirements for the optical homogeneity of the PI film are extremely demanding. The optical homogeneity of the stretch-resistant PI film proposed in this paper with 100 mm diameter and low thermal expansion coefficient meets the Rayleigh criterion, which has the potential for applications in the imaging field. In addition, the tensile strength of this PI is 285 MPa, which is ~2.6 times that of the PMDA-ODA type PI; the coefficient of thermal expansion is about 3.2 ppmK-1, which is comparable to that of the Novastrat®905 type PI and is one order of magnitude lower than that of the commercial PI films. These excellent basic properties reserve more space to further improve the space adaptability of the PI film. The solution of the optical homogeneity of the PI film will lay the foundation for its application in thin film diffractive optical elements.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.200381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Preparation method for polyimide films with imaging potential
Polyimide (PI) film is widely used in aerospace, microelectronics, and other fields because of its excellent thermal stability and mechanical strength. However, there are very few reports about its application in the direction of optical imaging. To use PI film for imaging, the requirements for the optical homogeneity of the PI film are extremely demanding. The optical homogeneity of the stretch-resistant PI film proposed in this paper with 100 mm diameter and low thermal expansion coefficient meets the Rayleigh criterion, which has the potential for applications in the imaging field. In addition, the tensile strength of this PI is 285 MPa, which is ~2.6 times that of the PMDA-ODA type PI; the coefficient of thermal expansion is about 3.2 ppmK-1, which is comparable to that of the Novastrat®905 type PI and is one order of magnitude lower than that of the commercial PI films. These excellent basic properties reserve more space to further improve the space adaptability of the PI film. The solution of the optical homogeneity of the PI film will lay the foundation for its application in thin film diffractive optical elements.