A. Gallo, Martina Mosconi, E. Trevisi, R. R. Santos
{"title":"镰刀菌毒素对反刍动物的不良影响:体内和体外研究综述","authors":"A. Gallo, Martina Mosconi, E. Trevisi, R. R. Santos","doi":"10.3390/dairy3030035","DOIUrl":null,"url":null,"abstract":"With an increased knowledge of the mechanism of action of Fusarium mycotoxins, the concept that these substances are deleterious only for monogastric species is obsolete. Indeed, most mycotoxins can be converted into less toxic compounds by the rumen microflora from healthy animals. However, mycotoxin absorption and its conversion to more toxic metabolites, as well as their impact on the immune response and subsequently animal welfare, reproductive function, and milk quality during chronic exposure should not be neglected. Among the Fusarium mycotoxins, the most studied are deoxynivalenol (DON), zearalenone (ZEN), and fumonisins from the B class (FBs). It is remarkable that there is a paucity of in vivo research, with a low number of studies on nutrient digestibility and rumen function. Most of the in vitro studies are related to the reproductive function or are restricted to rumen incubation. When evaluating the production performance, milk yield is used as an evaluated parameter, but its quality for cheese production is often overlooked. In the present review, we summarize the most recent findings regarding the adverse effects of these mycotoxins with special attention to dairy cattle.","PeriodicalId":11001,"journal":{"name":"Dairy Science & Technology","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adverse Effects of Fusarium Toxins in Ruminants: A Review of In Vivo and In Vitro Studies\",\"authors\":\"A. Gallo, Martina Mosconi, E. Trevisi, R. R. Santos\",\"doi\":\"10.3390/dairy3030035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With an increased knowledge of the mechanism of action of Fusarium mycotoxins, the concept that these substances are deleterious only for monogastric species is obsolete. Indeed, most mycotoxins can be converted into less toxic compounds by the rumen microflora from healthy animals. However, mycotoxin absorption and its conversion to more toxic metabolites, as well as their impact on the immune response and subsequently animal welfare, reproductive function, and milk quality during chronic exposure should not be neglected. Among the Fusarium mycotoxins, the most studied are deoxynivalenol (DON), zearalenone (ZEN), and fumonisins from the B class (FBs). It is remarkable that there is a paucity of in vivo research, with a low number of studies on nutrient digestibility and rumen function. Most of the in vitro studies are related to the reproductive function or are restricted to rumen incubation. When evaluating the production performance, milk yield is used as an evaluated parameter, but its quality for cheese production is often overlooked. In the present review, we summarize the most recent findings regarding the adverse effects of these mycotoxins with special attention to dairy cattle.\",\"PeriodicalId\":11001,\"journal\":{\"name\":\"Dairy Science & Technology\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dairy Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dairy3030035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dairy Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dairy3030035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Adverse Effects of Fusarium Toxins in Ruminants: A Review of In Vivo and In Vitro Studies
With an increased knowledge of the mechanism of action of Fusarium mycotoxins, the concept that these substances are deleterious only for monogastric species is obsolete. Indeed, most mycotoxins can be converted into less toxic compounds by the rumen microflora from healthy animals. However, mycotoxin absorption and its conversion to more toxic metabolites, as well as their impact on the immune response and subsequently animal welfare, reproductive function, and milk quality during chronic exposure should not be neglected. Among the Fusarium mycotoxins, the most studied are deoxynivalenol (DON), zearalenone (ZEN), and fumonisins from the B class (FBs). It is remarkable that there is a paucity of in vivo research, with a low number of studies on nutrient digestibility and rumen function. Most of the in vitro studies are related to the reproductive function or are restricted to rumen incubation. When evaluating the production performance, milk yield is used as an evaluated parameter, but its quality for cheese production is often overlooked. In the present review, we summarize the most recent findings regarding the adverse effects of these mycotoxins with special attention to dairy cattle.