Juefei Wu, Wang Yue-Chao, Yu Liu, Bo Sun, Yanhong Zhao, Jiawei Xian, Xingyu Gao, Haifeng Liu, Haifeng Song
{"title":"高压下β-UH3电子结构跃迁的第一性原理研究","authors":"Juefei Wu, Wang Yue-Chao, Yu Liu, Bo Sun, Yanhong Zhao, Jiawei Xian, Xingyu Gao, Haifeng Liu, Haifeng Song","doi":"10.1063/5.0091969","DOIUrl":null,"url":null,"abstract":"We investigate the electronic properties of stable β-UH3 under high pressure up to 75 GPa within the first-principles DFT + U formalism with pressure-dependent U in a self-consistent calculation, and we find an electronic structure transition at about 20 GPa due to the quantum process of localization and itinerancy for partially filled uranium 5 f electrons. The electronic structure transition is examined from four perspectives: magnetization, band structure, density of states, and 5 f electron energy. On the basis of the density of states of 5 f electrons, we propose an order parameter, namely, the 5 f electron energy, to quantify the electronic structure transition under pressure. Analogously to the isostructural transition in 3 d systems, β-UH3 retains its magnetic order after the electronic structure transition; however, this is not accompanied by volume collapse at the transition point. Our calculation is helpful for understanding the electronic properties of β-UH3 under high pressure.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"57 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"First-principles study on the electronic structure transition of β-UH3 under high pressure\",\"authors\":\"Juefei Wu, Wang Yue-Chao, Yu Liu, Bo Sun, Yanhong Zhao, Jiawei Xian, Xingyu Gao, Haifeng Liu, Haifeng Song\",\"doi\":\"10.1063/5.0091969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the electronic properties of stable β-UH3 under high pressure up to 75 GPa within the first-principles DFT + U formalism with pressure-dependent U in a self-consistent calculation, and we find an electronic structure transition at about 20 GPa due to the quantum process of localization and itinerancy for partially filled uranium 5 f electrons. The electronic structure transition is examined from four perspectives: magnetization, band structure, density of states, and 5 f electron energy. On the basis of the density of states of 5 f electrons, we propose an order parameter, namely, the 5 f electron energy, to quantify the electronic structure transition under pressure. Analogously to the isostructural transition in 3 d systems, β-UH3 retains its magnetic order after the electronic structure transition; however, this is not accompanied by volume collapse at the transition point. Our calculation is helpful for understanding the electronic properties of β-UH3 under high pressure.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0091969\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0091969","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
First-principles study on the electronic structure transition of β-UH3 under high pressure
We investigate the electronic properties of stable β-UH3 under high pressure up to 75 GPa within the first-principles DFT + U formalism with pressure-dependent U in a self-consistent calculation, and we find an electronic structure transition at about 20 GPa due to the quantum process of localization and itinerancy for partially filled uranium 5 f electrons. The electronic structure transition is examined from four perspectives: magnetization, band structure, density of states, and 5 f electron energy. On the basis of the density of states of 5 f electrons, we propose an order parameter, namely, the 5 f electron energy, to quantify the electronic structure transition under pressure. Analogously to the isostructural transition in 3 d systems, β-UH3 retains its magnetic order after the electronic structure transition; however, this is not accompanied by volume collapse at the transition point. Our calculation is helpful for understanding the electronic properties of β-UH3 under high pressure.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.