{"title":"基于卷积神经学习的双咖啡环纳米等离子体效应检测Sars-Cov-2","authors":"Kamyar Behrouzi, Liwei Lin","doi":"10.1109/Transducers50396.2021.9495602","DOIUrl":null,"url":null,"abstract":"We develop a sensing method based on the double-coffee ring phenomenon for the first time using localized surface plasmon resonance (LSPR) effect in gold nanoparticles (GNPs) to detect SARS-CoV-2 Nucleocapsid proteins with high sensitivity. Testing images are further analyzed via the convolutional neural learning for enhanced accuracy. The circular-shape hydrophilic PTFE porous membrane with a hydrophobic ring barrier is utilized as the sensing platform. When the virus proteins are interacting with antibody coated GNPs solution on the platform, a double-coffee ring image is observed and the convolutional neural network helps the differentiation for the first small protein-GNPs ring at the center and a second non-specific ring at the hydrophobic barrier. We use this double-coffee ring to detect viral infection and quantify the concentration of COVID-19 viruses in 5 ng/ml (LOD), similar to Abbott BinaxNOW® testing kit, to 1000 ng/ml. As such this detection scheme could open up a new class of biomolecular research in the field of micro/nano fluidics.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"19 1","pages":"381-384"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-Coffee Ring Nanoplasmonic Effects with Convolutional Neural Learning for Sars-Cov-2 Detection\",\"authors\":\"Kamyar Behrouzi, Liwei Lin\",\"doi\":\"10.1109/Transducers50396.2021.9495602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a sensing method based on the double-coffee ring phenomenon for the first time using localized surface plasmon resonance (LSPR) effect in gold nanoparticles (GNPs) to detect SARS-CoV-2 Nucleocapsid proteins with high sensitivity. Testing images are further analyzed via the convolutional neural learning for enhanced accuracy. The circular-shape hydrophilic PTFE porous membrane with a hydrophobic ring barrier is utilized as the sensing platform. When the virus proteins are interacting with antibody coated GNPs solution on the platform, a double-coffee ring image is observed and the convolutional neural network helps the differentiation for the first small protein-GNPs ring at the center and a second non-specific ring at the hydrophobic barrier. We use this double-coffee ring to detect viral infection and quantify the concentration of COVID-19 viruses in 5 ng/ml (LOD), similar to Abbott BinaxNOW® testing kit, to 1000 ng/ml. As such this detection scheme could open up a new class of biomolecular research in the field of micro/nano fluidics.\",\"PeriodicalId\":6814,\"journal\":{\"name\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"volume\":\"19 1\",\"pages\":\"381-384\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Transducers50396.2021.9495602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Double-Coffee Ring Nanoplasmonic Effects with Convolutional Neural Learning for Sars-Cov-2 Detection
We develop a sensing method based on the double-coffee ring phenomenon for the first time using localized surface plasmon resonance (LSPR) effect in gold nanoparticles (GNPs) to detect SARS-CoV-2 Nucleocapsid proteins with high sensitivity. Testing images are further analyzed via the convolutional neural learning for enhanced accuracy. The circular-shape hydrophilic PTFE porous membrane with a hydrophobic ring barrier is utilized as the sensing platform. When the virus proteins are interacting with antibody coated GNPs solution on the platform, a double-coffee ring image is observed and the convolutional neural network helps the differentiation for the first small protein-GNPs ring at the center and a second non-specific ring at the hydrophobic barrier. We use this double-coffee ring to detect viral infection and quantify the concentration of COVID-19 viruses in 5 ng/ml (LOD), similar to Abbott BinaxNOW® testing kit, to 1000 ng/ml. As such this detection scheme could open up a new class of biomolecular research in the field of micro/nano fluidics.