运输工具推进系统设计与优化的动力学模型

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
G. Peruń
{"title":"运输工具推进系统设计与优化的动力学模型","authors":"G. Peruń","doi":"10.34768/amcs-2023-0014","DOIUrl":null,"url":null,"abstract":"Abstract Designing power transmission systems is a complex and often time-consuming problem. In this task, various computational tools make it possible to speed up the process and verify a great many different solutions before the final one is developed. It is widely possible today to conduct computer simulations of the operation of various devices before the first physical prototype is built. The article presents an example of a dynamic model of power transmission systems, which has been developed to support work aimed at designing new and optimizing existing systems of that type, as well as to help diagnose them by designing diagnostic algorithms sensitive to early stages of damage development. The paper also presents sample results of tests conducted with the model, used at the gear design stage. In the presented model, the main goal is to reproduce the phenomena occurring in gears as well as possible, using numerous experiments in this direction featured in the literature. Many already historical models present different ways of modeling, but they often made significant simplifications, required by the limitations of the nature of computational capabilities. Differences also result from the purpose of the models being developed, and the analysis of these different ways of doing things makes it possible to choose the most appropriate approach.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"21 1","pages":"183 - 195"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dynamic Model as a Tool for Design and Optimization of Propulsion Systems of Transport Means\",\"authors\":\"G. Peruń\",\"doi\":\"10.34768/amcs-2023-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Designing power transmission systems is a complex and often time-consuming problem. In this task, various computational tools make it possible to speed up the process and verify a great many different solutions before the final one is developed. It is widely possible today to conduct computer simulations of the operation of various devices before the first physical prototype is built. The article presents an example of a dynamic model of power transmission systems, which has been developed to support work aimed at designing new and optimizing existing systems of that type, as well as to help diagnose them by designing diagnostic algorithms sensitive to early stages of damage development. The paper also presents sample results of tests conducted with the model, used at the gear design stage. In the presented model, the main goal is to reproduce the phenomena occurring in gears as well as possible, using numerous experiments in this direction featured in the literature. Many already historical models present different ways of modeling, but they often made significant simplifications, required by the limitations of the nature of computational capabilities. Differences also result from the purpose of the models being developed, and the analysis of these different ways of doing things makes it possible to choose the most appropriate approach.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"21 1\",\"pages\":\"183 - 195\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2023-0014\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0014","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

动力传动系统的设计是一个复杂且费时的问题。在这项任务中,各种计算工具使加速过程成为可能,并在开发最终解决方案之前验证许多不同的解决方案。今天,在第一个物理原型制造出来之前,对各种设备的操作进行计算机模拟是广泛可能的。本文提出了一个动力传输系统动态模型的例子,该模型的开发是为了支持旨在设计新的和优化现有系统的工作,以及通过设计对早期损害发展敏感的诊断算法来帮助诊断这些系统。本文还介绍了在齿轮设计阶段使用该模型进行测试的样本结果。在提出的模型中,主要目标是尽可能地再现齿轮中发生的现象,使用文献中这个方向的大量实验。许多已有历史的模型呈现了不同的建模方式,但由于计算能力的局限性,它们通常进行了重要的简化。差异还源于正在开发的模型的目的,对这些不同的做事方式的分析使选择最合适的方法成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dynamic Model as a Tool for Design and Optimization of Propulsion Systems of Transport Means
Abstract Designing power transmission systems is a complex and often time-consuming problem. In this task, various computational tools make it possible to speed up the process and verify a great many different solutions before the final one is developed. It is widely possible today to conduct computer simulations of the operation of various devices before the first physical prototype is built. The article presents an example of a dynamic model of power transmission systems, which has been developed to support work aimed at designing new and optimizing existing systems of that type, as well as to help diagnose them by designing diagnostic algorithms sensitive to early stages of damage development. The paper also presents sample results of tests conducted with the model, used at the gear design stage. In the presented model, the main goal is to reproduce the phenomena occurring in gears as well as possible, using numerous experiments in this direction featured in the literature. Many already historical models present different ways of modeling, but they often made significant simplifications, required by the limitations of the nature of computational capabilities. Differences also result from the purpose of the models being developed, and the analysis of these different ways of doing things makes it possible to choose the most appropriate approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信