N. Hirschauer, Sven Grüner, O. Musshoff, C. Becker
{"title":"显著性检验和p值变异性的陷阱:计量经济学视角","authors":"N. Hirschauer, Sven Grüner, O. Musshoff, C. Becker","doi":"10.1214/18-SS122","DOIUrl":null,"url":null,"abstract":"Data on how many scientific findings are reproducible are generally bleak and a wealth of papers have warned against misuses of the p-value and resulting false findings in recent years. This paper discusses the question of what we can(not) learn from the p-value, which is still widely considered as the gold standard of statistical validity. We aim to provide a non-technical and easily accessible resource for statistical practitioners who wish to spot and avoid misinterpretations and misuses of statistical significance tests. For this purpose, we first classify and describe the most widely discussed (“classical”) pitfalls of significance testing, and review published work on these misuses with a focus on regression-based “confirmatory” study. This includes a description of the single-study bias and a simulation-based illustration of how proper meta-analysis compares to misleading significance counts (“vote counting”). Going beyond the classical pitfalls, we also use simulation to provide intuition that relying on the statistical estimate “p-value” as a measure of evidence without considering its sample-to-sample variability falls short of the mark even within an otherwise appropriate interpretation. We conclude with a discussion of the","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"44 1","pages":"136-172"},"PeriodicalIF":11.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Pitfalls of significance testing and $p$-value variability: An econometrics perspective\",\"authors\":\"N. Hirschauer, Sven Grüner, O. Musshoff, C. Becker\",\"doi\":\"10.1214/18-SS122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data on how many scientific findings are reproducible are generally bleak and a wealth of papers have warned against misuses of the p-value and resulting false findings in recent years. This paper discusses the question of what we can(not) learn from the p-value, which is still widely considered as the gold standard of statistical validity. We aim to provide a non-technical and easily accessible resource for statistical practitioners who wish to spot and avoid misinterpretations and misuses of statistical significance tests. For this purpose, we first classify and describe the most widely discussed (“classical”) pitfalls of significance testing, and review published work on these misuses with a focus on regression-based “confirmatory” study. This includes a description of the single-study bias and a simulation-based illustration of how proper meta-analysis compares to misleading significance counts (“vote counting”). Going beyond the classical pitfalls, we also use simulation to provide intuition that relying on the statistical estimate “p-value” as a measure of evidence without considering its sample-to-sample variability falls short of the mark even within an otherwise appropriate interpretation. We conclude with a discussion of the\",\"PeriodicalId\":46627,\"journal\":{\"name\":\"Statistics Surveys\",\"volume\":\"44 1\",\"pages\":\"136-172\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/18-SS122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/18-SS122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Pitfalls of significance testing and $p$-value variability: An econometrics perspective
Data on how many scientific findings are reproducible are generally bleak and a wealth of papers have warned against misuses of the p-value and resulting false findings in recent years. This paper discusses the question of what we can(not) learn from the p-value, which is still widely considered as the gold standard of statistical validity. We aim to provide a non-technical and easily accessible resource for statistical practitioners who wish to spot and avoid misinterpretations and misuses of statistical significance tests. For this purpose, we first classify and describe the most widely discussed (“classical”) pitfalls of significance testing, and review published work on these misuses with a focus on regression-based “confirmatory” study. This includes a description of the single-study bias and a simulation-based illustration of how proper meta-analysis compares to misleading significance counts (“vote counting”). Going beyond the classical pitfalls, we also use simulation to provide intuition that relying on the statistical estimate “p-value” as a measure of evidence without considering its sample-to-sample variability falls short of the mark even within an otherwise appropriate interpretation. We conclude with a discussion of the
期刊介绍:
Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.