{"title":"码头起重机调度问题的np -完备性","authors":"A. Skaf, Samir Dawaliby, Arezki Aberkane","doi":"10.5121/csit.2022.121802","DOIUrl":null,"url":null,"abstract":"This paper discusses the computational complexity of the quay crane scheduling problem (QCSP) in a maritime port. To prove that a problem is NP-complete, there should be no polynomial time algorithm for the exact solution, and only heuristic approaches are used to obtain near-optimal solutions but in reasonable time complexity. To address this, first we formulate the QCSP as a mixed integer linear programming to solve it to optimal, and next we theoretically prove that the examined problem is NP-complete.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The NP-Completeness of Quay Crane Scheduling Problem\",\"authors\":\"A. Skaf, Samir Dawaliby, Arezki Aberkane\",\"doi\":\"10.5121/csit.2022.121802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the computational complexity of the quay crane scheduling problem (QCSP) in a maritime port. To prove that a problem is NP-complete, there should be no polynomial time algorithm for the exact solution, and only heuristic approaches are used to obtain near-optimal solutions but in reasonable time complexity. To address this, first we formulate the QCSP as a mixed integer linear programming to solve it to optimal, and next we theoretically prove that the examined problem is NP-complete.\",\"PeriodicalId\":91205,\"journal\":{\"name\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.121802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The NP-Completeness of Quay Crane Scheduling Problem
This paper discusses the computational complexity of the quay crane scheduling problem (QCSP) in a maritime port. To prove that a problem is NP-complete, there should be no polynomial time algorithm for the exact solution, and only heuristic approaches are used to obtain near-optimal solutions but in reasonable time complexity. To address this, first we formulate the QCSP as a mixed integer linear programming to solve it to optimal, and next we theoretically prove that the examined problem is NP-complete.