随机0/1多面体的展开

Pub Date : 2022-07-08 DOI:10.1002/rsa.21184
Brett Leroux, Luis Rademacher
{"title":"随机0/1多面体的展开","authors":"Brett Leroux, Luis Rademacher","doi":"10.1002/rsa.21184","DOIUrl":null,"url":null,"abstract":"A conjecture of Milena Mihail and Umesh Vazirani (Proc. 24th Annu. ACM Symp. Theory Comput., ACM, Victoria, BC, 1992, pp. 26–38.) states that the edge expansion of the graph of every polytope is at least one. Any lower bound on the edge expansion gives an upper bound for the mixing time of a random walk on the graph of the polytope. Such random walks are important because they can be used to generate an element from a set of combinatorial objects uniformly at random. A weaker form of the conjecture of Mihail and Vazirani says that the edge expansion of the graph of a polytope in is greater than one over some polynomial function of . This weaker version of the conjecture would suffice for all applications. Our main result is that the edge expansion of the graph of a random polytope in is at least with high probability.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Expansion of random 0/1 polytopes\",\"authors\":\"Brett Leroux, Luis Rademacher\",\"doi\":\"10.1002/rsa.21184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A conjecture of Milena Mihail and Umesh Vazirani (Proc. 24th Annu. ACM Symp. Theory Comput., ACM, Victoria, BC, 1992, pp. 26–38.) states that the edge expansion of the graph of every polytope is at least one. Any lower bound on the edge expansion gives an upper bound for the mixing time of a random walk on the graph of the polytope. Such random walks are important because they can be used to generate an element from a set of combinatorial objects uniformly at random. A weaker form of the conjecture of Mihail and Vazirani says that the edge expansion of the graph of a polytope in is greater than one over some polynomial function of . This weaker version of the conjecture would suffice for all applications. Our main result is that the edge expansion of the graph of a random polytope in is at least with high probability.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Milena Mihail和Umesh Vazirani的猜想(Proc. 24 Annu)。美国电脑。理论第一版。, ACM, Victoria, BC, 1992, pp. 26-38 .)指出,每个多面体的图的边展开至少是一个。边缘展开的任何下界都给出了多面体图上随机游走混合时间的上界。这种随机游走很重要,因为它们可以用来从一组组合对象中均匀随机地生成一个元素。Mihail和Vazirani猜想的一种较弱的形式是,一个多面体的图的边展开式大于某多项式函数的1 /。这个猜想的弱版本将满足所有应用。我们的主要结果是,随机多面体的图的边展开至少是高概率的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Expansion of random 0/1 polytopes
A conjecture of Milena Mihail and Umesh Vazirani (Proc. 24th Annu. ACM Symp. Theory Comput., ACM, Victoria, BC, 1992, pp. 26–38.) states that the edge expansion of the graph of every polytope is at least one. Any lower bound on the edge expansion gives an upper bound for the mixing time of a random walk on the graph of the polytope. Such random walks are important because they can be used to generate an element from a set of combinatorial objects uniformly at random. A weaker form of the conjecture of Mihail and Vazirani says that the edge expansion of the graph of a polytope in is greater than one over some polynomial function of . This weaker version of the conjecture would suffice for all applications. Our main result is that the edge expansion of the graph of a random polytope in is at least with high probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信