Bill T. Fischer, D. Marshall, J. Hanchar, D. Riley, Scott Hiebert
{"title":"巨型铜斑岩矿床及其伴生的碧玺角砾岩管的化学和反射光谱鉴别碧玺种类:检验碧玺作为矿物载体","authors":"Bill T. Fischer, D. Marshall, J. Hanchar, D. Riley, Scott Hiebert","doi":"10.5382/econgeo.4987","DOIUrl":null,"url":null,"abstract":"\n The A.M. breccia is part of the Giant Copper porphyry deposit in southern British Columbia. It is the only well-defined zoned tourmaline breccia pipe in the Canadian Cordillera. Tourmaline is a common alteration mineral within the A.M. breccia and is spatially associated with Cu mineralization. Observed changes in tourmaline chemistry range from alkali (schorlitic-dravitic) to calcic (feruvitic-uvitic). Tourmaline subspecies vary based on their spatial location within the A.M. breccia. Tourmaline outside of the pipe contains higher concentrations of Mg, whereas tourmaline preferentially incorporates Fe within the pipe. These chemical variations are indistinguishable in hand specimens. Spectral reflectance data were collected from 587 tourmaline grains to determine if discerning chemical changes in tourmaline can be made field-based and thus more cost-effective. Spectral reflectance differentiates tourmaline associated with mineralization and breccia textures from tourmaline occurring distal to the pipe contact or within barren tourmaline breccia pipes. Fe-rich tourmaline within the A.M. breccia shows spectral characteristics of end-member schorl (Fe-rich) spectra. Tourmaline distal to the A.M. breccia and within barren pipes demonstrates spectra of end-member dravite (Mg-rich). This grouping suggests that tourmaline subspecies can be inferred by spectral reflectance, enhancing the efficiency of tourmaline as a mineral vector.\n Tourmaline was also identified via airborne spectral surveys. However, the airborne spectral survey did not identify the end-member spectral properties identified by in situ analysis. Airborne spectral surveys can rapidly identify tourmaline breccia pipe exposures and expedite early stages of exploration in ore districts where tourmaline is a known gangue mineral.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"50 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIFFERENTIATING TOURMALINE SPECIES VIA CHEMISTRY AND REFLECTANCE SPECTROSCOPY AT THE GIANT COPPER PORPHYRY DEPOSIT AND ASSOCIATED TOURMALINE BRECCIA PIPES: TESTING TOURMALINE AS A MINERAL VECTOR\",\"authors\":\"Bill T. Fischer, D. Marshall, J. Hanchar, D. Riley, Scott Hiebert\",\"doi\":\"10.5382/econgeo.4987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The A.M. breccia is part of the Giant Copper porphyry deposit in southern British Columbia. It is the only well-defined zoned tourmaline breccia pipe in the Canadian Cordillera. Tourmaline is a common alteration mineral within the A.M. breccia and is spatially associated with Cu mineralization. Observed changes in tourmaline chemistry range from alkali (schorlitic-dravitic) to calcic (feruvitic-uvitic). Tourmaline subspecies vary based on their spatial location within the A.M. breccia. Tourmaline outside of the pipe contains higher concentrations of Mg, whereas tourmaline preferentially incorporates Fe within the pipe. These chemical variations are indistinguishable in hand specimens. Spectral reflectance data were collected from 587 tourmaline grains to determine if discerning chemical changes in tourmaline can be made field-based and thus more cost-effective. Spectral reflectance differentiates tourmaline associated with mineralization and breccia textures from tourmaline occurring distal to the pipe contact or within barren tourmaline breccia pipes. Fe-rich tourmaline within the A.M. breccia shows spectral characteristics of end-member schorl (Fe-rich) spectra. Tourmaline distal to the A.M. breccia and within barren pipes demonstrates spectra of end-member dravite (Mg-rich). This grouping suggests that tourmaline subspecies can be inferred by spectral reflectance, enhancing the efficiency of tourmaline as a mineral vector.\\n Tourmaline was also identified via airborne spectral surveys. However, the airborne spectral survey did not identify the end-member spectral properties identified by in situ analysis. Airborne spectral surveys can rapidly identify tourmaline breccia pipe exposures and expedite early stages of exploration in ore districts where tourmaline is a known gangue mineral.\",\"PeriodicalId\":11469,\"journal\":{\"name\":\"Economic Geology\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5382/econgeo.4987\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5382/econgeo.4987","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
DIFFERENTIATING TOURMALINE SPECIES VIA CHEMISTRY AND REFLECTANCE SPECTROSCOPY AT THE GIANT COPPER PORPHYRY DEPOSIT AND ASSOCIATED TOURMALINE BRECCIA PIPES: TESTING TOURMALINE AS A MINERAL VECTOR
The A.M. breccia is part of the Giant Copper porphyry deposit in southern British Columbia. It is the only well-defined zoned tourmaline breccia pipe in the Canadian Cordillera. Tourmaline is a common alteration mineral within the A.M. breccia and is spatially associated with Cu mineralization. Observed changes in tourmaline chemistry range from alkali (schorlitic-dravitic) to calcic (feruvitic-uvitic). Tourmaline subspecies vary based on their spatial location within the A.M. breccia. Tourmaline outside of the pipe contains higher concentrations of Mg, whereas tourmaline preferentially incorporates Fe within the pipe. These chemical variations are indistinguishable in hand specimens. Spectral reflectance data were collected from 587 tourmaline grains to determine if discerning chemical changes in tourmaline can be made field-based and thus more cost-effective. Spectral reflectance differentiates tourmaline associated with mineralization and breccia textures from tourmaline occurring distal to the pipe contact or within barren tourmaline breccia pipes. Fe-rich tourmaline within the A.M. breccia shows spectral characteristics of end-member schorl (Fe-rich) spectra. Tourmaline distal to the A.M. breccia and within barren pipes demonstrates spectra of end-member dravite (Mg-rich). This grouping suggests that tourmaline subspecies can be inferred by spectral reflectance, enhancing the efficiency of tourmaline as a mineral vector.
Tourmaline was also identified via airborne spectral surveys. However, the airborne spectral survey did not identify the end-member spectral properties identified by in situ analysis. Airborne spectral surveys can rapidly identify tourmaline breccia pipe exposures and expedite early stages of exploration in ore districts where tourmaline is a known gangue mineral.
期刊介绍:
The journal, now published semi-quarterly, was first published in 1905 by the Economic Geology Publishing Company (PUBCO), a not-for-profit company established for the purpose of publishing a periodical devoted to economic geology. On the founding of SEG in 1920, a cooperative arrangement between PUBCO and SEG made the journal the official organ of the Society, and PUBCO agreed to carry the Society''s name on the front cover under the heading "Bulletin of the Society of Economic Geologists". PUBCO and SEG continued to operate as cooperating but separate entities until 2001, when the Board of Directors of PUBCO and the Council of SEG, by unanimous consent, approved a formal agreement of merger. The former activities of the PUBCO Board of Directors are now carried out by a Publications Board, a new self-governing unit within SEG.