构造图分割分区的度量空间方法

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
S. Szabó
{"title":"构造图分割分区的度量空间方法","authors":"S. Szabó","doi":"10.2478/ausi-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract In an earlier work [6] the concept of splitting partition of a graph was introduced in connection with the maximum clique problem. A splitting partition of a graph can be used to replace the graph by two smaller graphs in the course of a clique search algorithm. In other words splitting partitions can serve as a branching rule in an algorithm to compute the clique number of a given graph. In the paper we revisit this branching idea. We will describe a technique to construct not necessary optimal splitting partitions. The given graph can be viewed as a metric space and the geometry of this space plays a guiding role. In order to assess the performance of the procedure we carried out numerical experiments.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"4 1","pages":"131 - 141"},"PeriodicalIF":0.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metric space method for constructing splitting partitions of graphs\",\"authors\":\"S. Szabó\",\"doi\":\"10.2478/ausi-2019-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In an earlier work [6] the concept of splitting partition of a graph was introduced in connection with the maximum clique problem. A splitting partition of a graph can be used to replace the graph by two smaller graphs in the course of a clique search algorithm. In other words splitting partitions can serve as a branching rule in an algorithm to compute the clique number of a given graph. In the paper we revisit this branching idea. We will describe a technique to construct not necessary optimal splitting partitions. The given graph can be viewed as a metric space and the geometry of this space plays a guiding role. In order to assess the performance of the procedure we carried out numerical experiments.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"4 1\",\"pages\":\"131 - 141\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2019-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在较早的工作[6]中,针对最大团问题引入了图的分割概念。在团搜索算法中,图的分裂分割可以用来用两个更小的图来代替图。换句话说,分割分区可以作为算法中的分支规则来计算给定图的团数。在本文中,我们重新审视了这个分支思想。我们将描述一种构造不必要的最优分割分区的技术。给定的图可以看作是一个度量空间,这个空间的几何形状起着指导作用。为了评估该程序的性能,我们进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metric space method for constructing splitting partitions of graphs
Abstract In an earlier work [6] the concept of splitting partition of a graph was introduced in connection with the maximum clique problem. A splitting partition of a graph can be used to replace the graph by two smaller graphs in the course of a clique search algorithm. In other words splitting partitions can serve as a branching rule in an algorithm to compute the clique number of a given graph. In the paper we revisit this branching idea. We will describe a technique to construct not necessary optimal splitting partitions. The given graph can be viewed as a metric space and the geometry of this space plays a guiding role. In order to assess the performance of the procedure we carried out numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信