{"title":"存在冷模式气体吸积的不同恒星形成历史:从太阳附近到遥远星系","authors":"M. Noguchi","doi":"10.1017/S1743921322004811","DOIUrl":null,"url":null,"abstract":"Abstract Existence of cold-mode gas accretion along with the hot-mode accretion of the shock-heated gas can explain the bimodality in the elemental abundance of the Milky Way disk stars as well as the mass-dependence of galaxy morphology represented by mass ratios of thin disks, thick disks, and bulges.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"49 1","pages":"322 - 324"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diverse Star Formation History in Presence of Cold-Mode Gas Accretion: From Solar Neighborhood to Distant Galaxies\",\"authors\":\"M. Noguchi\",\"doi\":\"10.1017/S1743921322004811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Existence of cold-mode gas accretion along with the hot-mode accretion of the shock-heated gas can explain the bimodality in the elemental abundance of the Milky Way disk stars as well as the mass-dependence of galaxy morphology represented by mass ratios of thin disks, thick disks, and bulges.\",\"PeriodicalId\":20590,\"journal\":{\"name\":\"Proceedings of the International Astronomical Union\",\"volume\":\"49 1\",\"pages\":\"322 - 324\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Astronomical Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1743921322004811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921322004811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diverse Star Formation History in Presence of Cold-Mode Gas Accretion: From Solar Neighborhood to Distant Galaxies
Abstract Existence of cold-mode gas accretion along with the hot-mode accretion of the shock-heated gas can explain the bimodality in the elemental abundance of the Milky Way disk stars as well as the mass-dependence of galaxy morphology represented by mass ratios of thin disks, thick disks, and bulges.