可再生SSG SPC单元在互联区域的发电频率支持

M. Abdollahi, J. I. Candela, J. Rocabert, R. Aguilar, P. Rodríguez
{"title":"可再生SSG SPC单元在互联区域的发电频率支持","authors":"M. Abdollahi, J. I. Candela, J. Rocabert, R. Aguilar, P. Rodríguez","doi":"10.1109/ICRERA.2017.8191204","DOIUrl":null,"url":null,"abstract":"Supporting frequency inside of each generation area as well as keeping proper synchronism condition between interconnected areas are two main challenges for grid operators. In this paper, after analysis of structure of Renewable Static Synchronous Generation unit based on Synchronous Power Controller (RSSG-SPC) for holding and control of frequency, it is shown that how a renewable unit based on SPC can contribute to frequency support inside of generation areas and in this way it will support synchronism of neighbor areas. Results of mathematical analysis and state space modelling, as well as time domain investigation then real time test of two area system in presence of RSSG-SPC confirm that by reducing Rate of Change of Frequency (ROCOF), increasing level of Frequency Nadir (FN) and providing stiffer Center Of Inertia (COI) for whole of the grid, the RSSG-SPC not only supports frequency on the generation areas, furthermore it will cover synchronism of these interconnected areas.","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"50 1","pages":"977-982"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Generation frequency support by renewable SSG SPC unit on interconnected areas\",\"authors\":\"M. Abdollahi, J. I. Candela, J. Rocabert, R. Aguilar, P. Rodríguez\",\"doi\":\"10.1109/ICRERA.2017.8191204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supporting frequency inside of each generation area as well as keeping proper synchronism condition between interconnected areas are two main challenges for grid operators. In this paper, after analysis of structure of Renewable Static Synchronous Generation unit based on Synchronous Power Controller (RSSG-SPC) for holding and control of frequency, it is shown that how a renewable unit based on SPC can contribute to frequency support inside of generation areas and in this way it will support synchronism of neighbor areas. Results of mathematical analysis and state space modelling, as well as time domain investigation then real time test of two area system in presence of RSSG-SPC confirm that by reducing Rate of Change of Frequency (ROCOF), increasing level of Frequency Nadir (FN) and providing stiffer Center Of Inertia (COI) for whole of the grid, the RSSG-SPC not only supports frequency on the generation areas, furthermore it will cover synchronism of these interconnected areas.\",\"PeriodicalId\":6535,\"journal\":{\"name\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"volume\":\"50 1\",\"pages\":\"977-982\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRERA.2017.8191204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

电网运营商面临的两大挑战是如何保证各发电区域内部的频率支持以及各互联区域之间保持适当的同步状态。本文通过对基于同步功率控制器(RSSG-SPC)的可再生静态同步发电机组的结构进行分析,分析了基于同步功率控制器的可再生静态同步发电机组对频率的保持和控制,说明了基于同步功率控制器的可再生静态同步发电机组如何在发电区域内提供频率支持,从而支持邻近区域的同步。数学分析、状态空间建模、时域调查和实时测试结果表明,通过降低频率变化率(ROCOF)、提高频率下限(FN)水平和为整个电网提供更强的惯性中心(COI), RSSG-SPC不仅支持发电区域的频率,而且还将覆盖这些互联区域的同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation frequency support by renewable SSG SPC unit on interconnected areas
Supporting frequency inside of each generation area as well as keeping proper synchronism condition between interconnected areas are two main challenges for grid operators. In this paper, after analysis of structure of Renewable Static Synchronous Generation unit based on Synchronous Power Controller (RSSG-SPC) for holding and control of frequency, it is shown that how a renewable unit based on SPC can contribute to frequency support inside of generation areas and in this way it will support synchronism of neighbor areas. Results of mathematical analysis and state space modelling, as well as time domain investigation then real time test of two area system in presence of RSSG-SPC confirm that by reducing Rate of Change of Frequency (ROCOF), increasing level of Frequency Nadir (FN) and providing stiffer Center Of Inertia (COI) for whole of the grid, the RSSG-SPC not only supports frequency on the generation areas, furthermore it will cover synchronism of these interconnected areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信