Dianxiang Xu, Lijo Thomas, Michael Kent, T. Mouelhi, Yves Le Traon
{"title":"一种基于模型的访问控制策略自动化测试方法","authors":"Dianxiang Xu, Lijo Thomas, Michael Kent, T. Mouelhi, Yves Le Traon","doi":"10.1145/2295136.2295173","DOIUrl":null,"url":null,"abstract":"Access control policies in software systems can be implemented incorrectly for various reasons. This paper presents a model-based approach for automated testing of access control implementation. To feed the model-based testing process, test models are constructed by integrating declarative access control rules and contracts (preconditions and post-conditions) of the associated activities. The access control tests are generated from the test models to exercise the interactions of access control activities. Test executability is obtained through a mapping of the modeling elements to implementation constructs. The approach has been implemented in an industry-adopted test automation framework that supports the generation of test code in a variety of languages, such as Java, C, C++, C#, and HTML/Selenium IDE. The full model-based testing process has been applied to two systems implemented in Java. The effectiveness is evaluated in terms of access-control fault detection rate using mutation analysis of access control implementation. The experiments show that the model-based tests killed 99.7% of the mutants and the remaining mutants caused no policy violations.","PeriodicalId":74509,"journal":{"name":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","volume":"21 1","pages":"209-218"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"A model-based approach to automated testing of access control policies\",\"authors\":\"Dianxiang Xu, Lijo Thomas, Michael Kent, T. Mouelhi, Yves Le Traon\",\"doi\":\"10.1145/2295136.2295173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Access control policies in software systems can be implemented incorrectly for various reasons. This paper presents a model-based approach for automated testing of access control implementation. To feed the model-based testing process, test models are constructed by integrating declarative access control rules and contracts (preconditions and post-conditions) of the associated activities. The access control tests are generated from the test models to exercise the interactions of access control activities. Test executability is obtained through a mapping of the modeling elements to implementation constructs. The approach has been implemented in an industry-adopted test automation framework that supports the generation of test code in a variety of languages, such as Java, C, C++, C#, and HTML/Selenium IDE. The full model-based testing process has been applied to two systems implemented in Java. The effectiveness is evaluated in terms of access-control fault detection rate using mutation analysis of access control implementation. The experiments show that the model-based tests killed 99.7% of the mutants and the remaining mutants caused no policy violations.\",\"PeriodicalId\":74509,\"journal\":{\"name\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"volume\":\"21 1\",\"pages\":\"209-218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2295136.2295173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2295136.2295173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A model-based approach to automated testing of access control policies
Access control policies in software systems can be implemented incorrectly for various reasons. This paper presents a model-based approach for automated testing of access control implementation. To feed the model-based testing process, test models are constructed by integrating declarative access control rules and contracts (preconditions and post-conditions) of the associated activities. The access control tests are generated from the test models to exercise the interactions of access control activities. Test executability is obtained through a mapping of the modeling elements to implementation constructs. The approach has been implemented in an industry-adopted test automation framework that supports the generation of test code in a variety of languages, such as Java, C, C++, C#, and HTML/Selenium IDE. The full model-based testing process has been applied to two systems implemented in Java. The effectiveness is evaluated in terms of access-control fault detection rate using mutation analysis of access control implementation. The experiments show that the model-based tests killed 99.7% of the mutants and the remaining mutants caused no policy violations.