学习用图像级监督检测显著物体

Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng, D. Wang, Baocai Yin, Xiang Ruan
{"title":"学习用图像级监督检测显著物体","authors":"Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng, D. Wang, Baocai Yin, Xiang Ruan","doi":"10.1109/CVPR.2017.404","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNNs) have substantially improved the state-of-the-art in salient object detection. However, training DNNs requires costly pixel-level annotations. In this paper, we leverage the observation that image-level tags provide important cues of foreground salient objects, and develop a weakly supervised learning method for saliency detection using image-level tags only. The Foreground Inference Network (FIN) is introduced for this challenging task. In the first stage of our training method, FIN is jointly trained with a fully convolutional network (FCN) for image-level tag prediction. A global smooth pooling layer is proposed, enabling FCN to assign object category tags to corresponding object regions, while FIN is capable of capturing all potential foreground regions with the predicted saliency maps. In the second stage, FIN is fine-tuned with its predicted saliency maps as ground truth. For refinement of ground truth, an iterative Conditional Random Field is developed to enforce spatial label consistency and further boost performance. Our method alleviates annotation efforts and allows the usage of existing large scale training sets with image-level tags. Our model runs at 60 FPS, outperforms unsupervised ones with a large margin, and achieves comparable or even superior performance than fully supervised counterparts.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"69 1","pages":"3796-3805"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"821","resultStr":"{\"title\":\"Learning to Detect Salient Objects with Image-Level Supervision\",\"authors\":\"Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng, D. Wang, Baocai Yin, Xiang Ruan\",\"doi\":\"10.1109/CVPR.2017.404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Networks (DNNs) have substantially improved the state-of-the-art in salient object detection. However, training DNNs requires costly pixel-level annotations. In this paper, we leverage the observation that image-level tags provide important cues of foreground salient objects, and develop a weakly supervised learning method for saliency detection using image-level tags only. The Foreground Inference Network (FIN) is introduced for this challenging task. In the first stage of our training method, FIN is jointly trained with a fully convolutional network (FCN) for image-level tag prediction. A global smooth pooling layer is proposed, enabling FCN to assign object category tags to corresponding object regions, while FIN is capable of capturing all potential foreground regions with the predicted saliency maps. In the second stage, FIN is fine-tuned with its predicted saliency maps as ground truth. For refinement of ground truth, an iterative Conditional Random Field is developed to enforce spatial label consistency and further boost performance. Our method alleviates annotation efforts and allows the usage of existing large scale training sets with image-level tags. Our model runs at 60 FPS, outperforms unsupervised ones with a large margin, and achieves comparable or even superior performance than fully supervised counterparts.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"69 1\",\"pages\":\"3796-3805\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"821\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 821

摘要

深度神经网络(dnn)在显著目标检测方面取得了长足的进步。然而,训练dnn需要昂贵的像素级注释。在本文中,我们利用图像级标签提供前景显著性对象的重要线索的观察结果,开发了一种仅使用图像级标签进行显著性检测的弱监督学习方法。前景推理网络(FIN)被引入到这个具有挑战性的任务中。在我们的训练方法的第一阶段,FIN与全卷积网络(FCN)联合训练,用于图像级标签预测。提出了一种全局平滑池化层,使FCN能够将目标类别标签分配到相应的目标区域,而FIN能够利用预测的显著性图捕获所有潜在的前景区域。在第二阶段,FIN将其预测的显著性图作为基础真理进行微调。为了改进地面真值,开发了一个迭代条件随机场来强制空间标签一致性并进一步提高性能。我们的方法减轻了标注工作,并允许使用现有的具有图像级标签的大规模训练集。我们的模型以60 FPS的速度运行,在很大程度上优于无监督的模型,并且实现了与完全监督的模型相当甚至更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Detect Salient Objects with Image-Level Supervision
Deep Neural Networks (DNNs) have substantially improved the state-of-the-art in salient object detection. However, training DNNs requires costly pixel-level annotations. In this paper, we leverage the observation that image-level tags provide important cues of foreground salient objects, and develop a weakly supervised learning method for saliency detection using image-level tags only. The Foreground Inference Network (FIN) is introduced for this challenging task. In the first stage of our training method, FIN is jointly trained with a fully convolutional network (FCN) for image-level tag prediction. A global smooth pooling layer is proposed, enabling FCN to assign object category tags to corresponding object regions, while FIN is capable of capturing all potential foreground regions with the predicted saliency maps. In the second stage, FIN is fine-tuned with its predicted saliency maps as ground truth. For refinement of ground truth, an iterative Conditional Random Field is developed to enforce spatial label consistency and further boost performance. Our method alleviates annotation efforts and allows the usage of existing large scale training sets with image-level tags. Our model runs at 60 FPS, outperforms unsupervised ones with a large margin, and achieves comparable or even superior performance than fully supervised counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信