频域粘声波方程解的源和边界条件建模的数值考虑

S. Avendaño, Juan Carlos Muñoz Cuartas
{"title":"频域粘声波方程解的源和边界条件建模的数值考虑","authors":"S. Avendaño, Juan Carlos Muñoz Cuartas","doi":"10.29047/01225383.80","DOIUrl":null,"url":null,"abstract":"Seismic modeling is an important step in the process used for imaging Earth subsurface. Current applications require accurate models associated with solutions of the wave propagation equation in real media. Unfortunately, it is common not to find in the technical literature deep discussions on the impact of specific details associated with the physical modeling of some crucial ingredients of the process, such as seismic source term and boundary conditions. In this paper, we discuss some issues related to the modeling of wave propagation in visco-acoustic media using finite differences. We focus our attention on two major elements of the modeling problem that are associated to the source term and the boundary conditions. We show that the source term can be modeled using a scale parameter that controls the spread of energy and shows that this parameter is a function of frequency and position of the source. As to boundary conditions, we show that Perfectly Matched Layer (PML) parameters are also frequency dependent. For both cases, seismic source scale parameter and PML model parameters we provide values and functions that optimize the performance of the approach for problems where visco-acoustic wave propagation is required. Frequency domain Full Waveform Inversion (FWI), or Reverse Time Migration (RTM) processes that depend fundamentally on the appropriate modeling of the wave-field are potential fields of application of these results.","PeriodicalId":10745,"journal":{"name":"CT&F - Ciencia, Tecnología y Futuro","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical considerations on the modeling of source and boundary conditions for the frequency domain visco-acoustic wave equation solution\",\"authors\":\"S. Avendaño, Juan Carlos Muñoz Cuartas\",\"doi\":\"10.29047/01225383.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic modeling is an important step in the process used for imaging Earth subsurface. Current applications require accurate models associated with solutions of the wave propagation equation in real media. Unfortunately, it is common not to find in the technical literature deep discussions on the impact of specific details associated with the physical modeling of some crucial ingredients of the process, such as seismic source term and boundary conditions. In this paper, we discuss some issues related to the modeling of wave propagation in visco-acoustic media using finite differences. We focus our attention on two major elements of the modeling problem that are associated to the source term and the boundary conditions. We show that the source term can be modeled using a scale parameter that controls the spread of energy and shows that this parameter is a function of frequency and position of the source. As to boundary conditions, we show that Perfectly Matched Layer (PML) parameters are also frequency dependent. For both cases, seismic source scale parameter and PML model parameters we provide values and functions that optimize the performance of the approach for problems where visco-acoustic wave propagation is required. Frequency domain Full Waveform Inversion (FWI), or Reverse Time Migration (RTM) processes that depend fundamentally on the appropriate modeling of the wave-field are potential fields of application of these results.\",\"PeriodicalId\":10745,\"journal\":{\"name\":\"CT&F - Ciencia, Tecnología y Futuro\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CT&F - Ciencia, Tecnología y Futuro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29047/01225383.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CT&F - Ciencia, Tecnología y Futuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29047/01225383.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震模拟是地下成像过程中的一个重要步骤。当前的应用需要与实际介质中波传播方程的解相关联的精确模型。不幸的是,通常在技术文献中找不到与过程中某些关键成分的物理建模相关的具体细节的影响的深入讨论,例如震源项和边界条件。本文讨论了用有限差分法模拟粘声介质中波传播的一些问题。我们将注意力集中在与源项和边界条件相关的建模问题的两个主要元素上。我们表明源项可以使用控制能量扩散的尺度参数建模,并表明该参数是源频率和位置的函数。至于边界条件,我们证明了完全匹配层(PML)参数也是频率相关的。对于这两种情况,我们提供了震源尺度参数和PML模型参数的值和函数,以优化该方法在需要黏声波传播的问题中的性能。频域全波形反演(FWI)或逆时偏移(RTM)过程基本上依赖于对波场的适当建模,是这些结果应用的潜在领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical considerations on the modeling of source and boundary conditions for the frequency domain visco-acoustic wave equation solution
Seismic modeling is an important step in the process used for imaging Earth subsurface. Current applications require accurate models associated with solutions of the wave propagation equation in real media. Unfortunately, it is common not to find in the technical literature deep discussions on the impact of specific details associated with the physical modeling of some crucial ingredients of the process, such as seismic source term and boundary conditions. In this paper, we discuss some issues related to the modeling of wave propagation in visco-acoustic media using finite differences. We focus our attention on two major elements of the modeling problem that are associated to the source term and the boundary conditions. We show that the source term can be modeled using a scale parameter that controls the spread of energy and shows that this parameter is a function of frequency and position of the source. As to boundary conditions, we show that Perfectly Matched Layer (PML) parameters are also frequency dependent. For both cases, seismic source scale parameter and PML model parameters we provide values and functions that optimize the performance of the approach for problems where visco-acoustic wave propagation is required. Frequency domain Full Waveform Inversion (FWI), or Reverse Time Migration (RTM) processes that depend fundamentally on the appropriate modeling of the wave-field are potential fields of application of these results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信