最优域上的边界哈纳克原理

Francesco Paolo Maiale, Giorgio Tortone, B. Velichkov
{"title":"最优域上的边界哈纳克原理","authors":"Francesco Paolo Maiale, Giorgio Tortone, B. Velichkov","doi":"10.2422/2036-2145.202112_003","DOIUrl":null,"url":null,"abstract":"Abstract. We give a short and self-contained proof of the Boundary Harnack inequality for a class of domains satisfying some geometric conditions given in terms of a state function that behaves as the distance function to the boundary, is subharmonic inside the domain and satisfies some suitable estimates on the measure of its level sets. We also discuss the applications of this result to some shape optimization and free boundary problems.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Boundary Harnack principle on optimal domains\",\"authors\":\"Francesco Paolo Maiale, Giorgio Tortone, B. Velichkov\",\"doi\":\"10.2422/2036-2145.202112_003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We give a short and self-contained proof of the Boundary Harnack inequality for a class of domains satisfying some geometric conditions given in terms of a state function that behaves as the distance function to the boundary, is subharmonic inside the domain and satisfies some suitable estimates on the measure of its level sets. We also discuss the applications of this result to some shape optimization and free boundary problems.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202112_003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202112_003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要对于一类满足某些几何条件的域,我们给出了边界Harnack不等式的一个简短且完备的证明,该证明是用一个状态函数给出的,该状态函数表现为到边界的距离函数,在域内是次调和的,并且满足对其水平集测度的一些适当估计。我们还讨论了这一结果在某些形状优化和自由边界问题中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Boundary Harnack principle on optimal domains
Abstract. We give a short and self-contained proof of the Boundary Harnack inequality for a class of domains satisfying some geometric conditions given in terms of a state function that behaves as the distance function to the boundary, is subharmonic inside the domain and satisfies some suitable estimates on the measure of its level sets. We also discuss the applications of this result to some shape optimization and free boundary problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信