{"title":"两种潜在来源的石油到生物柴油——360度的比较研究","authors":"S. Nandi","doi":"10.38177/ajast.2020.4313","DOIUrl":null,"url":null,"abstract":"Jatropha curcas oil (JCO) and karanja oil have been identified for the comparative study of production of renewable energy sources i.e. biodiesel as well as physico-chemical properties of biodiesel for its potentiality. Enzyme Novozyme 435 (Candida antarctica) is used as biocatalyst (8%) for the conversion in both the cases with 5:1 molar ratio of alcohol to oil for 8 hours with mixing intensity of 600 rpm at 550C. JCO shows higher conversion efficiency at these parameters than karanja oil. Biodiesels obtained from JCO and karanja oil are analysed based on physico-chemical properties like specific gravity, kinematic viscosity, density, calorific value, cetane number, flash point, cloud point and acid number. With regard to specific gravity, kinematic viscosity, density, calorific value and cetane number, the JCO biodiesel shows higher values than karanja biodiesel whereas flash point and cloud point of karanja biodiesel are higher than JCO biodiesel. With respect to the compositional analysis, JCO biodiesel contains 95.67% methyl ester but karanja biodiesel contains 92.57% methyl ester. Apart from this, triglycerides (TG), diglycerides (DG) and monoglycerides (MG) content of JCO and karanja oil biodiesel are 1.68%, 1.08%, 2.68% and 1.89%, 2.75% and 3.69% respectively.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oil to Biodiesel from Two Potential Sources – A 360 Degree Comparative Study\",\"authors\":\"S. Nandi\",\"doi\":\"10.38177/ajast.2020.4313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jatropha curcas oil (JCO) and karanja oil have been identified for the comparative study of production of renewable energy sources i.e. biodiesel as well as physico-chemical properties of biodiesel for its potentiality. Enzyme Novozyme 435 (Candida antarctica) is used as biocatalyst (8%) for the conversion in both the cases with 5:1 molar ratio of alcohol to oil for 8 hours with mixing intensity of 600 rpm at 550C. JCO shows higher conversion efficiency at these parameters than karanja oil. Biodiesels obtained from JCO and karanja oil are analysed based on physico-chemical properties like specific gravity, kinematic viscosity, density, calorific value, cetane number, flash point, cloud point and acid number. With regard to specific gravity, kinematic viscosity, density, calorific value and cetane number, the JCO biodiesel shows higher values than karanja biodiesel whereas flash point and cloud point of karanja biodiesel are higher than JCO biodiesel. With respect to the compositional analysis, JCO biodiesel contains 95.67% methyl ester but karanja biodiesel contains 92.57% methyl ester. Apart from this, triglycerides (TG), diglycerides (DG) and monoglycerides (MG) content of JCO and karanja oil biodiesel are 1.68%, 1.08%, 2.68% and 1.89%, 2.75% and 3.69% respectively.\",\"PeriodicalId\":9858,\"journal\":{\"name\":\"Chemical Engineering (Engineering) eJournal\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering (Engineering) eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38177/ajast.2020.4313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering (Engineering) eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38177/ajast.2020.4313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oil to Biodiesel from Two Potential Sources – A 360 Degree Comparative Study
Jatropha curcas oil (JCO) and karanja oil have been identified for the comparative study of production of renewable energy sources i.e. biodiesel as well as physico-chemical properties of biodiesel for its potentiality. Enzyme Novozyme 435 (Candida antarctica) is used as biocatalyst (8%) for the conversion in both the cases with 5:1 molar ratio of alcohol to oil for 8 hours with mixing intensity of 600 rpm at 550C. JCO shows higher conversion efficiency at these parameters than karanja oil. Biodiesels obtained from JCO and karanja oil are analysed based on physico-chemical properties like specific gravity, kinematic viscosity, density, calorific value, cetane number, flash point, cloud point and acid number. With regard to specific gravity, kinematic viscosity, density, calorific value and cetane number, the JCO biodiesel shows higher values than karanja biodiesel whereas flash point and cloud point of karanja biodiesel are higher than JCO biodiesel. With respect to the compositional analysis, JCO biodiesel contains 95.67% methyl ester but karanja biodiesel contains 92.57% methyl ester. Apart from this, triglycerides (TG), diglycerides (DG) and monoglycerides (MG) content of JCO and karanja oil biodiesel are 1.68%, 1.08%, 2.68% and 1.89%, 2.75% and 3.69% respectively.