具有不同构型和交替顺序障碍物的通道内流动和传热的数值研究

H. A. Lafta
{"title":"具有不同构型和交替顺序障碍物的通道内流动和传热的数值研究","authors":"H. A. Lafta","doi":"10.32792/utq/utj/vol13/1/5","DOIUrl":null,"url":null,"abstract":"In the present study, a numerical investigation has been made to predict the laminar flow and heat transfer through a rectangular channel with adiabatic, different configuration obstacles which are arranged alternately on the upper and lower walls of the channel. These walls are subjected to a constant heat flux 500 W/m2.  The effect of obstacles number, and obstacles shape on the flow and heat transfer characteristics with different Reynolds number (100,200,300,400,500,600and 700) have been studied. The continuity, momentum, and energy governing equations are solved by the finite volume method. The results of this study reveal that the obstacles have an obvious effect on parameters of the flow and heat transfer enhancement. The heat transfer is improved more as the obstacle's number increase. Further that, using rectangular obstacle leads to increase heat transfer rate higher than the rest of shapes for all Reynolds number tested.","PeriodicalId":23465,"journal":{"name":"University of Thi-Qar Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of flow and heat transfer in a channel with different configurations and alternately order obstacles\",\"authors\":\"H. A. Lafta\",\"doi\":\"10.32792/utq/utj/vol13/1/5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, a numerical investigation has been made to predict the laminar flow and heat transfer through a rectangular channel with adiabatic, different configuration obstacles which are arranged alternately on the upper and lower walls of the channel. These walls are subjected to a constant heat flux 500 W/m2.  The effect of obstacles number, and obstacles shape on the flow and heat transfer characteristics with different Reynolds number (100,200,300,400,500,600and 700) have been studied. The continuity, momentum, and energy governing equations are solved by the finite volume method. The results of this study reveal that the obstacles have an obvious effect on parameters of the flow and heat transfer enhancement. The heat transfer is improved more as the obstacle's number increase. Further that, using rectangular obstacle leads to increase heat transfer rate higher than the rest of shapes for all Reynolds number tested.\",\"PeriodicalId\":23465,\"journal\":{\"name\":\"University of Thi-Qar Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"University of Thi-Qar Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32792/utq/utj/vol13/1/5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"University of Thi-Qar Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32792/utq/utj/vol13/1/5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用数值模拟的方法,对具有不同构型绝热障碍物的矩形通道内的层流流动和换热进行了预测。这些墙壁承受着500瓦/平方米的恒定热流。研究了不同雷诺数(100,200,300,400,500,600和700)下障碍物数和障碍物形状对流动和换热特性的影响。用有限体积法求解了连续方程、动量方程和能量方程。研究结果表明,障碍物对流动和传热强化参数有明显的影响。随着障碍物数量的增加,传热得到了更大的改善。此外,在所有雷诺数测试中,使用矩形障碍物的传热率都高于其他形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigation of flow and heat transfer in a channel with different configurations and alternately order obstacles
In the present study, a numerical investigation has been made to predict the laminar flow and heat transfer through a rectangular channel with adiabatic, different configuration obstacles which are arranged alternately on the upper and lower walls of the channel. These walls are subjected to a constant heat flux 500 W/m2.  The effect of obstacles number, and obstacles shape on the flow and heat transfer characteristics with different Reynolds number (100,200,300,400,500,600and 700) have been studied. The continuity, momentum, and energy governing equations are solved by the finite volume method. The results of this study reveal that the obstacles have an obvious effect on parameters of the flow and heat transfer enhancement. The heat transfer is improved more as the obstacle's number increase. Further that, using rectangular obstacle leads to increase heat transfer rate higher than the rest of shapes for all Reynolds number tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信