Ricardo Nobre, A. Ilic, Sergio Santander-Jiménez, L. Sousa
{"title":"探索张量核在上位检测中的二元精度能力","authors":"Ricardo Nobre, A. Ilic, Sergio Santander-Jiménez, L. Sousa","doi":"10.1109/IPDPS47924.2020.00043","DOIUrl":null,"url":null,"abstract":"Genome-wide association studies are performed to correlate a number of diseases and other physical or even psychological conditions (phenotype) with substitutions of nucleotides at specific positions in the human genome, mainly single-nucleotide polymorphisms (SNPs). Some conditions, possibly because of the complexity of the mechanisms that give rise to them, have been identified to be more statistically correlated with genotype when multiple SNPs are jointly taken into account. However, the discovery of new associations between genotype and phenotype is exponentially slowed down by the increase of computational power required when epistasis, i.e., interactions between SNPs, is considered. This paper proposes a novel graphics processing unit (GPU)-based approach for epistasis detection that combines the use of modern tensor cores with native support for processing binarized inputs with algorithmic and target-focused optimizations. Using only a single mid-range Turing-based GPU, the proposed approach is able to evaluate 64.8×1012 and 25.4×1012 sets of SNPs per second, normalized to the number of patients, when considering 2-way and 3-way epistasis detection, respectively. This proposal is able to surpass the state-of-the-art approach by 6× and 8.2× in terms of the number of pairs and triplets of SNP allelic patient data evaluated per unit of time per GPU.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"1 1","pages":"338-347"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Exploring the Binary Precision Capabilities of Tensor Cores for Epistasis Detection\",\"authors\":\"Ricardo Nobre, A. Ilic, Sergio Santander-Jiménez, L. Sousa\",\"doi\":\"10.1109/IPDPS47924.2020.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genome-wide association studies are performed to correlate a number of diseases and other physical or even psychological conditions (phenotype) with substitutions of nucleotides at specific positions in the human genome, mainly single-nucleotide polymorphisms (SNPs). Some conditions, possibly because of the complexity of the mechanisms that give rise to them, have been identified to be more statistically correlated with genotype when multiple SNPs are jointly taken into account. However, the discovery of new associations between genotype and phenotype is exponentially slowed down by the increase of computational power required when epistasis, i.e., interactions between SNPs, is considered. This paper proposes a novel graphics processing unit (GPU)-based approach for epistasis detection that combines the use of modern tensor cores with native support for processing binarized inputs with algorithmic and target-focused optimizations. Using only a single mid-range Turing-based GPU, the proposed approach is able to evaluate 64.8×1012 and 25.4×1012 sets of SNPs per second, normalized to the number of patients, when considering 2-way and 3-way epistasis detection, respectively. This proposal is able to surpass the state-of-the-art approach by 6× and 8.2× in terms of the number of pairs and triplets of SNP allelic patient data evaluated per unit of time per GPU.\",\"PeriodicalId\":6805,\"journal\":{\"name\":\"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"1 1\",\"pages\":\"338-347\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS47924.2020.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring the Binary Precision Capabilities of Tensor Cores for Epistasis Detection
Genome-wide association studies are performed to correlate a number of diseases and other physical or even psychological conditions (phenotype) with substitutions of nucleotides at specific positions in the human genome, mainly single-nucleotide polymorphisms (SNPs). Some conditions, possibly because of the complexity of the mechanisms that give rise to them, have been identified to be more statistically correlated with genotype when multiple SNPs are jointly taken into account. However, the discovery of new associations between genotype and phenotype is exponentially slowed down by the increase of computational power required when epistasis, i.e., interactions between SNPs, is considered. This paper proposes a novel graphics processing unit (GPU)-based approach for epistasis detection that combines the use of modern tensor cores with native support for processing binarized inputs with algorithmic and target-focused optimizations. Using only a single mid-range Turing-based GPU, the proposed approach is able to evaluate 64.8×1012 and 25.4×1012 sets of SNPs per second, normalized to the number of patients, when considering 2-way and 3-way epistasis detection, respectively. This proposal is able to surpass the state-of-the-art approach by 6× and 8.2× in terms of the number of pairs and triplets of SNP allelic patient data evaluated per unit of time per GPU.