S. Oustan, M. Khorshid, N. Najafi, Khataee Ali Reza
{"title":"零价金属和双金属存在下Cr(VI)污染土壤的还原修复","authors":"S. Oustan, M. Khorshid, N. Najafi, Khataee Ali Reza","doi":"10.30492/IJCCE.2021.135174.4293","DOIUrl":null,"url":null,"abstract":"The time-dependent efficiency of zero-valent metals (ZVMs) including Al0 and Zn0 and their bimetals (Fe/Al and Fe/Zn, 0.1 g shell metal g-1 core metal) to reduce Cr(VI) in three contaminated soils (calcareous, non-calcareous near neutral and slightly acidic) was studied. The Cr(VI)-contaminated soils (100 and 500 mg kg-1) were amended with the reductants (0, 5 and 10 g kg-1) and the concentration of exchangeable Cr(VI) was determined after 0.5, 4, 24, 48 and 168 hours. It was found that the average reducing capacity of the bimetallic particles (11.4 mg Cr g-1) was much higher than the ZVMs (3.3 mg Cr g-1). The ZVMs showed a rapid passivation within only a few minutes, while the bimetallic particles preserved their reactivity even up to one hour. In addition, the efficiency of ZVMs in the slightly acid soil was much higher than two other soils. There was a good performance of Fe/Al in the calcareous soil with a higher hazard potential than two other soils. The Cr(VI) reduction capacity of the bimetallic particles in non-calcareous near neutral soil was two times more than in calcareous soil. The pseudo-first order Cr(VI) reduction rate constants for the bimetals (0.248 h-1) was on average higher than those of the ZVMs (0.074 h-1).","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"47 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reductive remediation of Cr(VI)-contaminated soils in the presence of zero-valent metals and bimetals\",\"authors\":\"S. Oustan, M. Khorshid, N. Najafi, Khataee Ali Reza\",\"doi\":\"10.30492/IJCCE.2021.135174.4293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The time-dependent efficiency of zero-valent metals (ZVMs) including Al0 and Zn0 and their bimetals (Fe/Al and Fe/Zn, 0.1 g shell metal g-1 core metal) to reduce Cr(VI) in three contaminated soils (calcareous, non-calcareous near neutral and slightly acidic) was studied. The Cr(VI)-contaminated soils (100 and 500 mg kg-1) were amended with the reductants (0, 5 and 10 g kg-1) and the concentration of exchangeable Cr(VI) was determined after 0.5, 4, 24, 48 and 168 hours. It was found that the average reducing capacity of the bimetallic particles (11.4 mg Cr g-1) was much higher than the ZVMs (3.3 mg Cr g-1). The ZVMs showed a rapid passivation within only a few minutes, while the bimetallic particles preserved their reactivity even up to one hour. In addition, the efficiency of ZVMs in the slightly acid soil was much higher than two other soils. There was a good performance of Fe/Al in the calcareous soil with a higher hazard potential than two other soils. The Cr(VI) reduction capacity of the bimetallic particles in non-calcareous near neutral soil was two times more than in calcareous soil. The pseudo-first order Cr(VI) reduction rate constants for the bimetals (0.248 h-1) was on average higher than those of the ZVMs (0.074 h-1).\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.135174.4293\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.135174.4293","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Reductive remediation of Cr(VI)-contaminated soils in the presence of zero-valent metals and bimetals
The time-dependent efficiency of zero-valent metals (ZVMs) including Al0 and Zn0 and their bimetals (Fe/Al and Fe/Zn, 0.1 g shell metal g-1 core metal) to reduce Cr(VI) in three contaminated soils (calcareous, non-calcareous near neutral and slightly acidic) was studied. The Cr(VI)-contaminated soils (100 and 500 mg kg-1) were amended with the reductants (0, 5 and 10 g kg-1) and the concentration of exchangeable Cr(VI) was determined after 0.5, 4, 24, 48 and 168 hours. It was found that the average reducing capacity of the bimetallic particles (11.4 mg Cr g-1) was much higher than the ZVMs (3.3 mg Cr g-1). The ZVMs showed a rapid passivation within only a few minutes, while the bimetallic particles preserved their reactivity even up to one hour. In addition, the efficiency of ZVMs in the slightly acid soil was much higher than two other soils. There was a good performance of Fe/Al in the calcareous soil with a higher hazard potential than two other soils. The Cr(VI) reduction capacity of the bimetallic particles in non-calcareous near neutral soil was two times more than in calcareous soil. The pseudo-first order Cr(VI) reduction rate constants for the bimetals (0.248 h-1) was on average higher than those of the ZVMs (0.074 h-1).
期刊介绍:
The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.