近球形两相生物膜相场模型的锐界面极限

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. M. Elliott, Luke Hatcher, B. Stinner
{"title":"近球形两相生物膜相场模型的锐界面极限","authors":"C. M. Elliott, Luke Hatcher, B. Stinner","doi":"10.4171/ifb/473","DOIUrl":null,"url":null,"abstract":"We consider sharp interface asymptotics for a phase field model of two phase near spherical biomembranes involving a coupling between the local mean curvature and the local composition proposed by the first and second authors. The model is motivated by lipid raft formation. We introduce a reduced diffuse interface energy depending only on the membrane composition and derive the $\\Gamma-$limit. We demonstrate that the Euler-Lagrange equations for the limiting functional and the sharp interface energy coincide. Finally, we consider a system of gradient flow equations with conserved Allen-Cahn dynamics for the phase field model. Performing a formal asymptotic analysis we obtain a system of gradient flow equations for the sharp interface energy coupling geodesic curvature flow for the phase interface to a fourth order PDE free boundary problem for the surface deformation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the sharp interface limit of a phase field model for near spherical two phase biomembranes\",\"authors\":\"C. M. Elliott, Luke Hatcher, B. Stinner\",\"doi\":\"10.4171/ifb/473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider sharp interface asymptotics for a phase field model of two phase near spherical biomembranes involving a coupling between the local mean curvature and the local composition proposed by the first and second authors. The model is motivated by lipid raft formation. We introduce a reduced diffuse interface energy depending only on the membrane composition and derive the $\\\\Gamma-$limit. We demonstrate that the Euler-Lagrange equations for the limiting functional and the sharp interface energy coincide. Finally, we consider a system of gradient flow equations with conserved Allen-Cahn dynamics for the phase field model. Performing a formal asymptotic analysis we obtain a system of gradient flow equations for the sharp interface energy coupling geodesic curvature flow for the phase interface to a fourth order PDE free boundary problem for the surface deformation.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/473\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/473","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑了两相近球形生物膜的相场模型的锐界面渐近性,该模型涉及局部平均曲率与第一和第二作者提出的局部组成之间的耦合。该模型是由脂筏形成驱动的。我们引入了仅依赖于膜组成的弥散界面能的简化,并推导了$\Gamma-$极限。证明了极限泛函的欧拉-拉格朗日方程与锐界面能是一致的。最后,我们考虑了相场模型中具有守恒Allen-Cahn动力学的梯度流方程系统。通过形式化的渐近分析,我们得到了尖锐界面能量耦合相界面测地线曲率流动的梯度流动方程系统,从而得到了表面变形的四阶PDE自由边界问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the sharp interface limit of a phase field model for near spherical two phase biomembranes
We consider sharp interface asymptotics for a phase field model of two phase near spherical biomembranes involving a coupling between the local mean curvature and the local composition proposed by the first and second authors. The model is motivated by lipid raft formation. We introduce a reduced diffuse interface energy depending only on the membrane composition and derive the $\Gamma-$limit. We demonstrate that the Euler-Lagrange equations for the limiting functional and the sharp interface energy coincide. Finally, we consider a system of gradient flow equations with conserved Allen-Cahn dynamics for the phase field model. Performing a formal asymptotic analysis we obtain a system of gradient flow equations for the sharp interface energy coupling geodesic curvature flow for the phase interface to a fourth order PDE free boundary problem for the surface deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信