{"title":"含DR13的TiO2/有机改性硅烷杂化材料的溶胶-凝胶制备及其光学性能","authors":"T. Gao, W. Que, Xiaofang Wang","doi":"10.4172/2469-410X.1000116","DOIUrl":null,"url":null,"abstract":"Disperse red 13 (DR13) azoaromatic chromophores were incorporated into sol-gel derived TiO2/organically modified silane matrix to achieve a hybrid material doped with dye molecules. Nonlinear optical properties of the asprepared hybrid material were investigated by an optical Kerr shutter technique with an 800-nm femtosecond laser. It is obtained that the response time of the bulk sample doped with 0.1% DR13 molecules is less than 208 fs and the third-order nonlinear refractive index is estimated at about 1.141×10-15 cm2/W. It is also found that the sample of material with higher DR13 content could be with higher third-order nonlinear susceptibility. The linear refractive index and the thickness of the hybrid films derived by a spin-coating process were also studied by a prism coupling technique. It is found that with an increasing of the baking temperature, both the refractive index and the thickness of the hybrid films decrease. Absorption spectra, microstructural and morphological properties of the hybrid films were also characterized by UV–Vis absorption spectroscopy, thermal gravimetric analysis, Fourier-transform infrared spectroscopy and atomic force microscopy. Results indicate that the as-prepared hybrid material is expected to be potential in ultrafast photonic applications.","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sol-gel Preparation and Optical Properties of TiO2/Organically Modified Silane Hybrid Material Containing DR13\",\"authors\":\"T. Gao, W. Que, Xiaofang Wang\",\"doi\":\"10.4172/2469-410X.1000116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disperse red 13 (DR13) azoaromatic chromophores were incorporated into sol-gel derived TiO2/organically modified silane matrix to achieve a hybrid material doped with dye molecules. Nonlinear optical properties of the asprepared hybrid material were investigated by an optical Kerr shutter technique with an 800-nm femtosecond laser. It is obtained that the response time of the bulk sample doped with 0.1% DR13 molecules is less than 208 fs and the third-order nonlinear refractive index is estimated at about 1.141×10-15 cm2/W. It is also found that the sample of material with higher DR13 content could be with higher third-order nonlinear susceptibility. The linear refractive index and the thickness of the hybrid films derived by a spin-coating process were also studied by a prism coupling technique. It is found that with an increasing of the baking temperature, both the refractive index and the thickness of the hybrid films decrease. Absorption spectra, microstructural and morphological properties of the hybrid films were also characterized by UV–Vis absorption spectroscopy, thermal gravimetric analysis, Fourier-transform infrared spectroscopy and atomic force microscopy. Results indicate that the as-prepared hybrid material is expected to be potential in ultrafast photonic applications.\",\"PeriodicalId\":92245,\"journal\":{\"name\":\"Journal of lasers, optics & photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of lasers, optics & photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2469-410X.1000116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.1000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sol-gel Preparation and Optical Properties of TiO2/Organically Modified Silane Hybrid Material Containing DR13
Disperse red 13 (DR13) azoaromatic chromophores were incorporated into sol-gel derived TiO2/organically modified silane matrix to achieve a hybrid material doped with dye molecules. Nonlinear optical properties of the asprepared hybrid material were investigated by an optical Kerr shutter technique with an 800-nm femtosecond laser. It is obtained that the response time of the bulk sample doped with 0.1% DR13 molecules is less than 208 fs and the third-order nonlinear refractive index is estimated at about 1.141×10-15 cm2/W. It is also found that the sample of material with higher DR13 content could be with higher third-order nonlinear susceptibility. The linear refractive index and the thickness of the hybrid films derived by a spin-coating process were also studied by a prism coupling technique. It is found that with an increasing of the baking temperature, both the refractive index and the thickness of the hybrid films decrease. Absorption spectra, microstructural and morphological properties of the hybrid films were also characterized by UV–Vis absorption spectroscopy, thermal gravimetric analysis, Fourier-transform infrared spectroscopy and atomic force microscopy. Results indicate that the as-prepared hybrid material is expected to be potential in ultrafast photonic applications.