模拟变量和预测变量背景下的矩不等式

Hiroaki Kaido, Jiaxuan Li, Marc Rysman
{"title":"模拟变量和预测变量背景下的矩不等式","authors":"Hiroaki Kaido, Jiaxuan Li, Marc Rysman","doi":"10.1920/WPM.CEM.2018.2618","DOIUrl":null,"url":null,"abstract":"This paper explores the effects of simulated moments on the performance of inference methods based on moment inequalities. Commonly used confi dence sets for parameters are level sets of criterion functions whose boundary points may depend on sample moments in an irregular manner. Due to this feature, simulation errors can affect the performance of inference in non-standard ways. In particular, a (fi rst-order) bias due to the simulation errors may remain in the estimated boundary of the con fidence set. We demonstrate, through Monte Carlo experiments, that simulation errors can signi ficantly reduce the coverage probabilities of confi dence sets in small samples. The size distortion is particularly severe when the number of inequality restrictions is large. These results highlight the danger of ignoring the sampling variations due to the simulation errors in moment inequality models. Similar issues arise when using predicted variables in moment inequalities models. We propose a method for properly correcting for these variations based on regularizing the intersection of moments in parameter space, and we show that our proposed method performs well theoretically and in practice.","PeriodicalId":8448,"journal":{"name":"arXiv: Econometrics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moment Inequalities in the Context of Simulated and Predicted Variables\",\"authors\":\"Hiroaki Kaido, Jiaxuan Li, Marc Rysman\",\"doi\":\"10.1920/WPM.CEM.2018.2618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the effects of simulated moments on the performance of inference methods based on moment inequalities. Commonly used confi dence sets for parameters are level sets of criterion functions whose boundary points may depend on sample moments in an irregular manner. Due to this feature, simulation errors can affect the performance of inference in non-standard ways. In particular, a (fi rst-order) bias due to the simulation errors may remain in the estimated boundary of the con fidence set. We demonstrate, through Monte Carlo experiments, that simulation errors can signi ficantly reduce the coverage probabilities of confi dence sets in small samples. The size distortion is particularly severe when the number of inequality restrictions is large. These results highlight the danger of ignoring the sampling variations due to the simulation errors in moment inequality models. Similar issues arise when using predicted variables in moment inequalities models. We propose a method for properly correcting for these variations based on regularizing the intersection of moments in parameter space, and we show that our proposed method performs well theoretically and in practice.\",\"PeriodicalId\":8448,\"journal\":{\"name\":\"arXiv: Econometrics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1920/WPM.CEM.2018.2618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1920/WPM.CEM.2018.2618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了模拟矩对基于矩不等式的推理方法性能的影响。常用的参数置信集是准则函数的水平集,其边界点可能以不规则的方式依赖于样本矩。由于这个特性,仿真误差会以非标准的方式影响推理的性能。特别是,由于模拟误差导致的(i -一阶)偏差可能在估计的置信集边界中保留。我们通过蒙特卡罗实验证明,模拟误差可以显着降低小样本中置信集的覆盖概率。当不等式约束数量较大时,尺寸畸变尤为严重。这些结果突出了由于力矩不等式模型的模拟误差而忽略采样变化的危险。在矩不等式模型中使用预测变量时也会出现类似的问题。我们提出了一种基于正则化参数空间中的矩交的方法来适当地校正这些变化,并证明了我们提出的方法在理论和实践中都有很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment Inequalities in the Context of Simulated and Predicted Variables
This paper explores the effects of simulated moments on the performance of inference methods based on moment inequalities. Commonly used confi dence sets for parameters are level sets of criterion functions whose boundary points may depend on sample moments in an irregular manner. Due to this feature, simulation errors can affect the performance of inference in non-standard ways. In particular, a (fi rst-order) bias due to the simulation errors may remain in the estimated boundary of the con fidence set. We demonstrate, through Monte Carlo experiments, that simulation errors can signi ficantly reduce the coverage probabilities of confi dence sets in small samples. The size distortion is particularly severe when the number of inequality restrictions is large. These results highlight the danger of ignoring the sampling variations due to the simulation errors in moment inequality models. Similar issues arise when using predicted variables in moment inequalities models. We propose a method for properly correcting for these variations based on regularizing the intersection of moments in parameter space, and we show that our proposed method performs well theoretically and in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信