具有趋化性和主动运输的Cahn-Hilliard系统模拟肿瘤生长的数值分析

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
H. Garcke, D. Trautwein
{"title":"具有趋化性和主动运输的Cahn-Hilliard系统模拟肿瘤生长的数值分析","authors":"H. Garcke, D. Trautwein","doi":"10.1515/jnma-2021-0094","DOIUrl":null,"url":null,"abstract":"Abstract A diffuse interface model for tumour growth in the presence of a nutrient consumed by the tumour is considered. The system of equations consists of a Cahn–Hilliard equation with source terms for the tumour cells and a reaction–diffusion equation for the nutrient. We introduce a fully-discrete finite element approximation of the model and prove stability bounds for the discrete scheme. Moreover, we show that discrete solutions exist and depend continuously on the initial and boundary data. We then pass to the limit in the discretization parameters and prove convergence to a global-in-time weak solution to the model. Under additional assumptions, this weak solution is unique. Finally, we present some numerical results including numerical error investigation in one spatial dimension and some long time simulations in two and three spatial dimensions.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport\",\"authors\":\"H. Garcke, D. Trautwein\",\"doi\":\"10.1515/jnma-2021-0094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A diffuse interface model for tumour growth in the presence of a nutrient consumed by the tumour is considered. The system of equations consists of a Cahn–Hilliard equation with source terms for the tumour cells and a reaction–diffusion equation for the nutrient. We introduce a fully-discrete finite element approximation of the model and prove stability bounds for the discrete scheme. Moreover, we show that discrete solutions exist and depend continuously on the initial and boundary data. We then pass to the limit in the discretization parameters and prove convergence to a global-in-time weak solution to the model. Under additional assumptions, this weak solution is unique. Finally, we present some numerical results including numerical error investigation in one spatial dimension and some long time simulations in two and three spatial dimensions.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2021-0094\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0094","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

摘要

摘要考虑了肿瘤在有营养物质消耗的情况下生长的扩散界面模型。方程组由肿瘤细胞源项的卡恩-希利亚德方程和营养物的反应-扩散方程组成。我们引入了模型的全离散有限元近似,并证明了离散格式的稳定性界。此外,我们证明了离散解的存在,并连续依赖于初始数据和边界数据。然后,我们通过离散参数的极限,并证明了模型的全局实时弱解的收敛性。在附加的假设下,这个弱解是唯一的。最后给出了一些数值结果,包括一维空间的数值误差研究和二维和三维空间的长时间模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport
Abstract A diffuse interface model for tumour growth in the presence of a nutrient consumed by the tumour is considered. The system of equations consists of a Cahn–Hilliard equation with source terms for the tumour cells and a reaction–diffusion equation for the nutrient. We introduce a fully-discrete finite element approximation of the model and prove stability bounds for the discrete scheme. Moreover, we show that discrete solutions exist and depend continuously on the initial and boundary data. We then pass to the limit in the discretization parameters and prove convergence to a global-in-time weak solution to the model. Under additional assumptions, this weak solution is unique. Finally, we present some numerical results including numerical error investigation in one spatial dimension and some long time simulations in two and three spatial dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信