NLP关系查询及其应用

Andrei Stoica, K. Pu, Heidar Davoudi
{"title":"NLP关系查询及其应用","authors":"Andrei Stoica, K. Pu, Heidar Davoudi","doi":"10.1109/IRI49571.2020.00064","DOIUrl":null,"url":null,"abstract":"Recent advances in natural language processing have shown the effectiveness of statistical and neural networkbased algorithms in a deep understanding of textual data. We demonstrate that the result of NLP analysis on text documents can enrich relational data in a way so that structured queries can be used to derive further value from text data. In this paper, we present how we can perform analytics on a scientific research dataset based on both the relational data and NLP topic modeling. The integrated NLP features together with the classical relational query constructs allow one to explore the topic structure of the DBLP dataset with flexibility and precision.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NLP Relational Queries and Its Application\",\"authors\":\"Andrei Stoica, K. Pu, Heidar Davoudi\",\"doi\":\"10.1109/IRI49571.2020.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in natural language processing have shown the effectiveness of statistical and neural networkbased algorithms in a deep understanding of textual data. We demonstrate that the result of NLP analysis on text documents can enrich relational data in a way so that structured queries can be used to derive further value from text data. In this paper, we present how we can perform analytics on a scientific research dataset based on both the relational data and NLP topic modeling. The integrated NLP features together with the classical relational query constructs allow one to explore the topic structure of the DBLP dataset with flexibility and precision.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自然语言处理的最新进展表明,基于统计和神经网络的算法在深入理解文本数据方面是有效的。我们证明了文本文档的NLP分析结果可以以某种方式丰富关系数据,以便结构化查询可以用于从文本数据中获得进一步的价值。在本文中,我们介绍了如何在关系数据和NLP主题建模的基础上对科研数据集进行分析。集成的NLP特征与经典的关系查询结构一起允许人们灵活而精确地探索DBLP数据集的主题结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NLP Relational Queries and Its Application
Recent advances in natural language processing have shown the effectiveness of statistical and neural networkbased algorithms in a deep understanding of textual data. We demonstrate that the result of NLP analysis on text documents can enrich relational data in a way so that structured queries can be used to derive further value from text data. In this paper, we present how we can perform analytics on a scientific research dataset based on both the relational data and NLP topic modeling. The integrated NLP features together with the classical relational query constructs allow one to explore the topic structure of the DBLP dataset with flexibility and precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信