图的边上Mostar索引

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
Hechao Liu, Ling Song, Qiqi Xiao, Zikai Tang
{"title":"图的边上Mostar索引","authors":"Hechao Liu, Ling Song, Qiqi Xiao, Zikai Tang","doi":"10.22052/IJMC.2020.221320.1489","DOIUrl":null,"url":null,"abstract":"The edge Mostar index 𝑀𝑜𝑒(𝐺) of a connected graph 𝐺 is defined as 𝑀𝑜𝑒(𝐺)=Σ𝑒=𝑢𝑣∈𝐸(𝐺) |𝑚𝑢(𝑒|𝐺)−𝑚𝑣(𝑒|𝐺)|, where 𝑚𝑢(𝑒|𝐺)and 𝑚𝑣(𝑒|𝐺) are, respectively, the number of edges of 𝐺 lying closer to vertex 𝑢 than to vertex 𝑣 and the number of edges of 𝐺 lying closer to vertex 𝑣 than to vertex 𝑢. In this paper, we determine the extremal values of edge Mostar index of some graphs. We characterize extremal trees, unicyclic graphs and determine the extremal graphs with maximum and second maximum edge Mostar index among cacti with size 𝑚 and 𝑡 cycles. At last, we give some open problems.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On edge Mostar index of graphs\",\"authors\":\"Hechao Liu, Ling Song, Qiqi Xiao, Zikai Tang\",\"doi\":\"10.22052/IJMC.2020.221320.1489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The edge Mostar index 𝑀𝑜𝑒(𝐺) of a connected graph 𝐺 is defined as 𝑀𝑜𝑒(𝐺)=Σ𝑒=𝑢𝑣∈𝐸(𝐺) |𝑚𝑢(𝑒|𝐺)−𝑚𝑣(𝑒|𝐺)|, where 𝑚𝑢(𝑒|𝐺)and 𝑚𝑣(𝑒|𝐺) are, respectively, the number of edges of 𝐺 lying closer to vertex 𝑢 than to vertex 𝑣 and the number of edges of 𝐺 lying closer to vertex 𝑣 than to vertex 𝑢. In this paper, we determine the extremal values of edge Mostar index of some graphs. We characterize extremal trees, unicyclic graphs and determine the extremal graphs with maximum and second maximum edge Mostar index among cacti with size 𝑚 and 𝑡 cycles. At last, we give some open problems.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2020.221320.1489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2020.221320.1489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

莫斯塔尔边缘指数𝑀𝑜𝑒(𝐺)的连通图𝐺被定义为𝑀𝑜𝑒(𝐺)=Σ𝑒=𝑢𝑣∈𝐸(𝐺)|𝑚𝑢(𝑒|𝐺)−𝑚𝑣(𝑒|𝐺)|,哪里𝑚𝑢(𝑒|𝐺)和𝑚𝑣(𝑒|𝐺),分别𝐺躺接近顶点的边数𝑢𝑣顶点和边的数量比𝐺接近顶点𝑣比顶点𝑢说谎。本文确定了一些图的边Mostar指数的极值。我们对具有𝑚和𝑡环大小的仙人掌的极值树、单环图进行了刻画,并确定了具有最大和次最大边Mostar指数的极值图。最后,给出了一些开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On edge Mostar index of graphs
The edge Mostar index 𝑀𝑜𝑒(𝐺) of a connected graph 𝐺 is defined as 𝑀𝑜𝑒(𝐺)=Σ𝑒=𝑢𝑣∈𝐸(𝐺) |𝑚𝑢(𝑒|𝐺)−𝑚𝑣(𝑒|𝐺)|, where 𝑚𝑢(𝑒|𝐺)and 𝑚𝑣(𝑒|𝐺) are, respectively, the number of edges of 𝐺 lying closer to vertex 𝑢 than to vertex 𝑣 and the number of edges of 𝐺 lying closer to vertex 𝑣 than to vertex 𝑢. In this paper, we determine the extremal values of edge Mostar index of some graphs. We characterize extremal trees, unicyclic graphs and determine the extremal graphs with maximum and second maximum edge Mostar index among cacti with size 𝑚 and 𝑡 cycles. At last, we give some open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信