{"title":"图的边上Mostar索引","authors":"Hechao Liu, Ling Song, Qiqi Xiao, Zikai Tang","doi":"10.22052/IJMC.2020.221320.1489","DOIUrl":null,"url":null,"abstract":"The edge Mostar index 𝑀𝑜𝑒(𝐺) of a connected graph 𝐺 is defined as 𝑀𝑜𝑒(𝐺)=Σ𝑒=𝑢𝑣∈𝐸(𝐺) |𝑚𝑢(𝑒|𝐺)−𝑚𝑣(𝑒|𝐺)|, where 𝑚𝑢(𝑒|𝐺)and 𝑚𝑣(𝑒|𝐺) are, respectively, the number of edges of 𝐺 lying closer to vertex 𝑢 than to vertex 𝑣 and the number of edges of 𝐺 lying closer to vertex 𝑣 than to vertex 𝑢. In this paper, we determine the extremal values of edge Mostar index of some graphs. We characterize extremal trees, unicyclic graphs and determine the extremal graphs with maximum and second maximum edge Mostar index among cacti with size 𝑚 and 𝑡 cycles. At last, we give some open problems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On edge Mostar index of graphs\",\"authors\":\"Hechao Liu, Ling Song, Qiqi Xiao, Zikai Tang\",\"doi\":\"10.22052/IJMC.2020.221320.1489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The edge Mostar index 𝑀𝑜𝑒(𝐺) of a connected graph 𝐺 is defined as 𝑀𝑜𝑒(𝐺)=Σ𝑒=𝑢𝑣∈𝐸(𝐺) |𝑚𝑢(𝑒|𝐺)−𝑚𝑣(𝑒|𝐺)|, where 𝑚𝑢(𝑒|𝐺)and 𝑚𝑣(𝑒|𝐺) are, respectively, the number of edges of 𝐺 lying closer to vertex 𝑢 than to vertex 𝑣 and the number of edges of 𝐺 lying closer to vertex 𝑣 than to vertex 𝑢. In this paper, we determine the extremal values of edge Mostar index of some graphs. We characterize extremal trees, unicyclic graphs and determine the extremal graphs with maximum and second maximum edge Mostar index among cacti with size 𝑚 and 𝑡 cycles. At last, we give some open problems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2020.221320.1489\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2020.221320.1489","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The edge Mostar index 𝑀𝑜𝑒(𝐺) of a connected graph 𝐺 is defined as 𝑀𝑜𝑒(𝐺)=Σ𝑒=𝑢𝑣∈𝐸(𝐺) |𝑚𝑢(𝑒|𝐺)−𝑚𝑣(𝑒|𝐺)|, where 𝑚𝑢(𝑒|𝐺)and 𝑚𝑣(𝑒|𝐺) are, respectively, the number of edges of 𝐺 lying closer to vertex 𝑢 than to vertex 𝑣 and the number of edges of 𝐺 lying closer to vertex 𝑣 than to vertex 𝑢. In this paper, we determine the extremal values of edge Mostar index of some graphs. We characterize extremal trees, unicyclic graphs and determine the extremal graphs with maximum and second maximum edge Mostar index among cacti with size 𝑚 and 𝑡 cycles. At last, we give some open problems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.