{"title":"完备格的超保持内映射的对偶化","authors":"L. Santocanale","doi":"10.4204/EPTCS.333.23","DOIUrl":null,"url":null,"abstract":"It is argued in (Eklund et al., 2018) that the quantale [L,L] of sup-preserving endomaps of a complete lattice L is a Girard quantale exactly when L is completely distributive. We have argued in (Santocanale, 2020) that this Girard quantale structure arises from the dual quantale of inf-preserving endomaps of L via Raney's transforms and extends to a Girard quantaloid structure on the full subcategory of SLatt (the category of complete lattices and sup-preserving maps) whose objects are the completely distributive lattices. It is the goal of this talk to illustrate further this connection between the quantale structure, Raney's transforms, and complete distributivity. Raney's transforms are indeed mix maps in the isomix category SLatt and most of the theory can be developed relying on naturality of these maps. We complete then the remarks on cyclic elements of [L,L] developed in (Santocanale, 2020) by investigating its dualizing elements. We argue that if [L,L] has the structure a Frobenius quantale, that is, if it has a dualizing element, not necessarily a cyclic one, then L is once more completely distributive. It follows then from a general statement on involutive residuated lattices that there is a bijection between dualizing elements of [L,L] and automorphisms of L. Finally, we also argue that if L is finite and [L,L] is autodual, then L is distributive.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"23 1","pages":"335-346"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dualizing sup-preserving endomaps of a complete lattice\",\"authors\":\"L. Santocanale\",\"doi\":\"10.4204/EPTCS.333.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is argued in (Eklund et al., 2018) that the quantale [L,L] of sup-preserving endomaps of a complete lattice L is a Girard quantale exactly when L is completely distributive. We have argued in (Santocanale, 2020) that this Girard quantale structure arises from the dual quantale of inf-preserving endomaps of L via Raney's transforms and extends to a Girard quantaloid structure on the full subcategory of SLatt (the category of complete lattices and sup-preserving maps) whose objects are the completely distributive lattices. It is the goal of this talk to illustrate further this connection between the quantale structure, Raney's transforms, and complete distributivity. Raney's transforms are indeed mix maps in the isomix category SLatt and most of the theory can be developed relying on naturality of these maps. We complete then the remarks on cyclic elements of [L,L] developed in (Santocanale, 2020) by investigating its dualizing elements. We argue that if [L,L] has the structure a Frobenius quantale, that is, if it has a dualizing element, not necessarily a cyclic one, then L is once more completely distributive. It follows then from a general statement on involutive residuated lattices that there is a bijection between dualizing elements of [L,L] and automorphisms of L. Finally, we also argue that if L is finite and [L,L] is autodual, then L is distributive.\",\"PeriodicalId\":11810,\"journal\":{\"name\":\"essentia law Merchant Shipping Act 1995\",\"volume\":\"23 1\",\"pages\":\"335-346\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"essentia law Merchant Shipping Act 1995\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.333.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.333.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
(Eklund et al., 2018)认为,完全格L的超保持内映射的量子[L,L]恰好在L完全分布时是吉拉德量子。我们在(Santocanale, 2020)中提出,这种吉拉德量子结构是由L的保内映射的对偶量子通过Raney变换产生的,并扩展到SLatt的满子范畴(完全格和超保映射的范畴)上的吉拉德量子样结构,其对象是完全分布格。这次演讲的目的是进一步说明量子结构、兰尼变换和完全分布性之间的联系。拉尼变换实际上是等分混合映射,大部分理论都可以依靠这些映射的自然性来发展。然后,我们通过研究[L,L]的二元元素来完成(Santocanale, 2020)中关于[L,L]的循环元素的注释。我们论证了如果[L,L]具有Frobenius量子化结构,也就是说,如果它有一个对偶元,而不一定是一个循环元,那么L又是完全分布的。由对合剩格的一般论述可知[L,L]的对偶元与L的自同构之间存在双射。最后,我们还论证了如果L是有限的,且[L,L]是自对偶的,则L是分配的。
Dualizing sup-preserving endomaps of a complete lattice
It is argued in (Eklund et al., 2018) that the quantale [L,L] of sup-preserving endomaps of a complete lattice L is a Girard quantale exactly when L is completely distributive. We have argued in (Santocanale, 2020) that this Girard quantale structure arises from the dual quantale of inf-preserving endomaps of L via Raney's transforms and extends to a Girard quantaloid structure on the full subcategory of SLatt (the category of complete lattices and sup-preserving maps) whose objects are the completely distributive lattices. It is the goal of this talk to illustrate further this connection between the quantale structure, Raney's transforms, and complete distributivity. Raney's transforms are indeed mix maps in the isomix category SLatt and most of the theory can be developed relying on naturality of these maps. We complete then the remarks on cyclic elements of [L,L] developed in (Santocanale, 2020) by investigating its dualizing elements. We argue that if [L,L] has the structure a Frobenius quantale, that is, if it has a dualizing element, not necessarily a cyclic one, then L is once more completely distributive. It follows then from a general statement on involutive residuated lattices that there is a bijection between dualizing elements of [L,L] and automorphisms of L. Finally, we also argue that if L is finite and [L,L] is autodual, then L is distributive.