多维趋化性平衡律系统的大时间行为和扩散极限

Tong Li, Dehua Wang, Fang Wang, Zhian Wang, Kun Zhao
{"title":"多维趋化性平衡律系统的大时间行为和扩散极限","authors":"Tong Li, Dehua Wang, Fang Wang, Zhian Wang, Kun Zhao","doi":"10.4310/CMS.2021.V19.N1.A10","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for a system of balance laws derived from a chemotaxis model with singular sensitivity in multiple space dimensions. Utilizing energy methods, we first prove the global well-posedness of classical solutions to the Cauchy problem when only the energy of the first order spatial derivatives of the initial data is sufficiently small, and the solutions are shown to converge to the prescribed constant equilibrium states as time goes to infinity. Then we prove that the solutions of the fully dissipative model converge to those of the corresponding partially dissipative model when the chemical diffusion coefficient tends to zero.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Large time behavior and diffusion limit for a system of balance laws from chemotaxis in multi-dimensions\",\"authors\":\"Tong Li, Dehua Wang, Fang Wang, Zhian Wang, Kun Zhao\",\"doi\":\"10.4310/CMS.2021.V19.N1.A10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cauchy problem for a system of balance laws derived from a chemotaxis model with singular sensitivity in multiple space dimensions. Utilizing energy methods, we first prove the global well-posedness of classical solutions to the Cauchy problem when only the energy of the first order spatial derivatives of the initial data is sufficiently small, and the solutions are shown to converge to the prescribed constant equilibrium states as time goes to infinity. Then we prove that the solutions of the fully dissipative model converge to those of the corresponding partially dissipative model when the chemical diffusion coefficient tends to zero.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/CMS.2021.V19.N1.A10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CMS.2021.V19.N1.A10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑了多维空间中由奇异灵敏度趋化模型导出的平衡律系统的柯西问题。利用能量方法,首先证明了当初始数据的一阶空间导数的能量足够小时,柯西问题经典解的全局适定性,并证明了当时间趋于无穷时,解收敛于规定的常数平衡态。然后证明了当化学扩散系数趋于零时,完全耗散模型的解收敛于相应的部分耗散模型的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large time behavior and diffusion limit for a system of balance laws from chemotaxis in multi-dimensions
We consider the Cauchy problem for a system of balance laws derived from a chemotaxis model with singular sensitivity in multiple space dimensions. Utilizing energy methods, we first prove the global well-posedness of classical solutions to the Cauchy problem when only the energy of the first order spatial derivatives of the initial data is sufficiently small, and the solutions are shown to converge to the prescribed constant equilibrium states as time goes to infinity. Then we prove that the solutions of the fully dissipative model converge to those of the corresponding partially dissipative model when the chemical diffusion coefficient tends to zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信