基于海洋雷达测量资料的海浪场可预测性研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
JaeHyeck Lee, Yoon-Seo Nam, Yuming Liu, Hee-Joo Yang
{"title":"基于海洋雷达测量资料的海浪场可预测性研究","authors":"JaeHyeck Lee, Yoon-Seo Nam, Yuming Liu, Hee-Joo Yang","doi":"10.1177/14750902231184096","DOIUrl":null,"url":null,"abstract":"In this study, the predictability of ocean wave fields is considered based on marine radar measurement data. Phase-resolved components obtained by applying 3D FFT-based reconstruction to a sequence of radar images are utilized for wave field prediction, and two different prediction approaches are introduced: (i) snapshot data-based prediction through the adjustment of the frequency and phase of each component, and (ii) spatiotemporal data-based prediction through the data assimilation for reconstructed wave fields. Furthermore, the time evolution of a predictable zone is derived for different shapes of measurement domains including rectangular and ring-shaped domains. To validate the proposed wave propagation modeling method, numerical simulations are conducted on synthetic radar images created by reflecting geometrical shadowing effects, and the prediction accuracy is examined in relation to the derived predictable zone. Lastly, the forecasting performance, which is represented by the predictable time range at a radar location, is discussed with respect to the prediction techniques, specifications of the reconstruction domain, and moving measurements.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on predictability of ocean wave fields based on marine radar measurement data\",\"authors\":\"JaeHyeck Lee, Yoon-Seo Nam, Yuming Liu, Hee-Joo Yang\",\"doi\":\"10.1177/14750902231184096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the predictability of ocean wave fields is considered based on marine radar measurement data. Phase-resolved components obtained by applying 3D FFT-based reconstruction to a sequence of radar images are utilized for wave field prediction, and two different prediction approaches are introduced: (i) snapshot data-based prediction through the adjustment of the frequency and phase of each component, and (ii) spatiotemporal data-based prediction through the data assimilation for reconstructed wave fields. Furthermore, the time evolution of a predictable zone is derived for different shapes of measurement domains including rectangular and ring-shaped domains. To validate the proposed wave propagation modeling method, numerical simulations are conducted on synthetic radar images created by reflecting geometrical shadowing effects, and the prediction accuracy is examined in relation to the derived predictable zone. Lastly, the forecasting performance, which is represented by the predictable time range at a radar location, is discussed with respect to the prediction techniques, specifications of the reconstruction domain, and moving measurements.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902231184096\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231184096","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本研究以海洋雷达测量资料为基础,考虑海浪场的可预测性。利用基于三维fft的雷达图像序列重建得到的相位分辨分量进行波场预测,并介绍了两种不同的预测方法:(i)通过调整各分量的频率和相位进行基于快照数据的预测;(ii)通过对重建波场的数据同化进行基于时空数据的预测。在此基础上,推导了矩形和环形两种不同形状测量域下可预测区域的时间演化规律。为了验证所提出的波传播建模方法,对反射几何阴影效应生成的合成雷达图像进行了数值模拟,并与推导出的可预测区域进行了预测精度检验。最后,从预测技术、重构域规格和运动测量等方面讨论了以雷达位置可预测时间范围为代表的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on predictability of ocean wave fields based on marine radar measurement data
In this study, the predictability of ocean wave fields is considered based on marine radar measurement data. Phase-resolved components obtained by applying 3D FFT-based reconstruction to a sequence of radar images are utilized for wave field prediction, and two different prediction approaches are introduced: (i) snapshot data-based prediction through the adjustment of the frequency and phase of each component, and (ii) spatiotemporal data-based prediction through the data assimilation for reconstructed wave fields. Furthermore, the time evolution of a predictable zone is derived for different shapes of measurement domains including rectangular and ring-shaped domains. To validate the proposed wave propagation modeling method, numerical simulations are conducted on synthetic radar images created by reflecting geometrical shadowing effects, and the prediction accuracy is examined in relation to the derived predictable zone. Lastly, the forecasting performance, which is represented by the predictable time range at a radar location, is discussed with respect to the prediction techniques, specifications of the reconstruction domain, and moving measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信