主题演讲1:自动驾驶中弹性计算的道路是由冗余铺就的

N. Saxena, S. Mathew, K. Saraswat
{"title":"主题演讲1:自动驾驶中弹性计算的道路是由冗余铺就的","authors":"N. Saxena, S. Mathew, K. Saraswat","doi":"10.1109/IRPS.2018.8353536","DOIUrl":null,"url":null,"abstract":"Deep neural networks use the computational power of massively parallel processors in applications such as autonomous driving. Autonomous driving demands resiliency (as in safety and reliability) and trillions of operations per second of computing performance to process sensor data with extreme accuracy. This keynote examines various approaches to achieve resiliency in autonomous cars and makes the case for design diversity based redundancy.","PeriodicalId":6387,"journal":{"name":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Keynote 1: The road to resilient computing in autonomous driving is paved with redundancy\",\"authors\":\"N. Saxena, S. Mathew, K. Saraswat\",\"doi\":\"10.1109/IRPS.2018.8353536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks use the computational power of massively parallel processors in applications such as autonomous driving. Autonomous driving demands resiliency (as in safety and reliability) and trillions of operations per second of computing performance to process sensor data with extreme accuracy. This keynote examines various approaches to achieve resiliency in autonomous cars and makes the case for design diversity based redundancy.\",\"PeriodicalId\":6387,\"journal\":{\"name\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.2018.8353536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2018.8353536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度神经网络在自动驾驶等应用中使用大规模并行处理器的计算能力。自动驾驶需要弹性(如安全性和可靠性)和每秒数万亿次的计算性能,以极高的精度处理传感器数据。本次主题演讲探讨了实现自动驾驶汽车弹性的各种方法,并提出了基于冗余设计多样性的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keynote 1: The road to resilient computing in autonomous driving is paved with redundancy
Deep neural networks use the computational power of massively parallel processors in applications such as autonomous driving. Autonomous driving demands resiliency (as in safety and reliability) and trillions of operations per second of computing performance to process sensor data with extreme accuracy. This keynote examines various approaches to achieve resiliency in autonomous cars and makes the case for design diversity based redundancy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信