指数核分数阶积分算子的一些Hermite-Hadamard和Ostrowski型不等式

IF 0.3 Q4 MATHEMATICS
H. Budak, M. Sarıkaya, F. Usta, H. Yildirim
{"title":"指数核分数阶积分算子的一些Hermite-Hadamard和Ostrowski型不等式","authors":"H. Budak, M. Sarıkaya, F. Usta, H. Yildirim","doi":"10.12697/ACUTM.2019.23.03","DOIUrl":null,"url":null,"abstract":"We rstly establish Hermite–Hadamard type integral inequalities for fractional integral operators. Secondly, we give new generalizations of fractional Ostrowski type inequalities through convex functions via Hölder and power means inequalities. In accordance with this purpose, we use fractional integral operators with exponential kernel.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"43 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Some Hermite–Hadamard and Ostrowski type inequalities for fractional integral operators with exponential kernel\",\"authors\":\"H. Budak, M. Sarıkaya, F. Usta, H. Yildirim\",\"doi\":\"10.12697/ACUTM.2019.23.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We rstly establish Hermite–Hadamard type integral inequalities for fractional integral operators. Secondly, we give new generalizations of fractional Ostrowski type inequalities through convex functions via Hölder and power means inequalities. In accordance with this purpose, we use fractional integral operators with exponential kernel.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2019.23.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2019.23.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

首先建立了分数阶积分算子的Hermite-Hadamard型积分不等式。其次,我们通过Hölder和幂意味着不等式给出了分数Ostrowski型不等式在凸函数中的新推广。根据这一目的,我们使用带指数核的分数阶积分算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Hermite–Hadamard and Ostrowski type inequalities for fractional integral operators with exponential kernel
We rstly establish Hermite–Hadamard type integral inequalities for fractional integral operators. Secondly, we give new generalizations of fractional Ostrowski type inequalities through convex functions via Hölder and power means inequalities. In accordance with this purpose, we use fractional integral operators with exponential kernel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信