K. Ni, W. Chakraborty, Jeffrey A. Smith, B. Grisafe, S. Datta
{"title":"深尺度铁电场效应管器件间变化的基本理解与控制","authors":"K. Ni, W. Chakraborty, Jeffrey A. Smith, B. Grisafe, S. Datta","doi":"10.23919/VLSIT.2019.8776497","DOIUrl":null,"url":null,"abstract":"In this work, we present a comprehensive Kinetic Monte Carlo (KMC) modeling based statistical framework to evaluate the device-to-device variation of thin-film HfO2 ferroelectric FET (FeFET). We conclude that the closing of the memory window in a FeFET array with device scaling can be attributed to: 1) limited number of domains; 2) variation among domains; 3) intrinsic stochasticity of individual domain switching. To enable further scaling of FeFET, co-optimization approaches from material, process, and device operation to control variation are proposed: i) increase the number of domains through material/process optimization (e.g. decrease of deposition temperature, etc.); ii) improve the uniformity of domains (e.g. minimizing the domain size variation and defect distribution, etc.); iii) increase the pulse amplitude/width to ensure deterministic switching of individual domains.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"3 1","pages":"T40-T41"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Fundamental Understanding and Control of Device-to-Device Variation in Deeply Scaled Ferroelectric FETs\",\"authors\":\"K. Ni, W. Chakraborty, Jeffrey A. Smith, B. Grisafe, S. Datta\",\"doi\":\"10.23919/VLSIT.2019.8776497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a comprehensive Kinetic Monte Carlo (KMC) modeling based statistical framework to evaluate the device-to-device variation of thin-film HfO2 ferroelectric FET (FeFET). We conclude that the closing of the memory window in a FeFET array with device scaling can be attributed to: 1) limited number of domains; 2) variation among domains; 3) intrinsic stochasticity of individual domain switching. To enable further scaling of FeFET, co-optimization approaches from material, process, and device operation to control variation are proposed: i) increase the number of domains through material/process optimization (e.g. decrease of deposition temperature, etc.); ii) improve the uniformity of domains (e.g. minimizing the domain size variation and defect distribution, etc.); iii) increase the pulse amplitude/width to ensure deterministic switching of individual domains.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"3 1\",\"pages\":\"T40-T41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fundamental Understanding and Control of Device-to-Device Variation in Deeply Scaled Ferroelectric FETs
In this work, we present a comprehensive Kinetic Monte Carlo (KMC) modeling based statistical framework to evaluate the device-to-device variation of thin-film HfO2 ferroelectric FET (FeFET). We conclude that the closing of the memory window in a FeFET array with device scaling can be attributed to: 1) limited number of domains; 2) variation among domains; 3) intrinsic stochasticity of individual domain switching. To enable further scaling of FeFET, co-optimization approaches from material, process, and device operation to control variation are proposed: i) increase the number of domains through material/process optimization (e.g. decrease of deposition temperature, etc.); ii) improve the uniformity of domains (e.g. minimizing the domain size variation and defect distribution, etc.); iii) increase the pulse amplitude/width to ensure deterministic switching of individual domains.