深尺度铁电场效应管器件间变化的基本理解与控制

K. Ni, W. Chakraborty, Jeffrey A. Smith, B. Grisafe, S. Datta
{"title":"深尺度铁电场效应管器件间变化的基本理解与控制","authors":"K. Ni, W. Chakraborty, Jeffrey A. Smith, B. Grisafe, S. Datta","doi":"10.23919/VLSIT.2019.8776497","DOIUrl":null,"url":null,"abstract":"In this work, we present a comprehensive Kinetic Monte Carlo (KMC) modeling based statistical framework to evaluate the device-to-device variation of thin-film HfO2 ferroelectric FET (FeFET). We conclude that the closing of the memory window in a FeFET array with device scaling can be attributed to: 1) limited number of domains; 2) variation among domains; 3) intrinsic stochasticity of individual domain switching. To enable further scaling of FeFET, co-optimization approaches from material, process, and device operation to control variation are proposed: i) increase the number of domains through material/process optimization (e.g. decrease of deposition temperature, etc.); ii) improve the uniformity of domains (e.g. minimizing the domain size variation and defect distribution, etc.); iii) increase the pulse amplitude/width to ensure deterministic switching of individual domains.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"3 1","pages":"T40-T41"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Fundamental Understanding and Control of Device-to-Device Variation in Deeply Scaled Ferroelectric FETs\",\"authors\":\"K. Ni, W. Chakraborty, Jeffrey A. Smith, B. Grisafe, S. Datta\",\"doi\":\"10.23919/VLSIT.2019.8776497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a comprehensive Kinetic Monte Carlo (KMC) modeling based statistical framework to evaluate the device-to-device variation of thin-film HfO2 ferroelectric FET (FeFET). We conclude that the closing of the memory window in a FeFET array with device scaling can be attributed to: 1) limited number of domains; 2) variation among domains; 3) intrinsic stochasticity of individual domain switching. To enable further scaling of FeFET, co-optimization approaches from material, process, and device operation to control variation are proposed: i) increase the number of domains through material/process optimization (e.g. decrease of deposition temperature, etc.); ii) improve the uniformity of domains (e.g. minimizing the domain size variation and defect distribution, etc.); iii) increase the pulse amplitude/width to ensure deterministic switching of individual domains.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"3 1\",\"pages\":\"T40-T41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

在这项工作中,我们提出了一个全面的基于动力学蒙特卡罗(KMC)建模的统计框架来评估薄膜HfO2铁电场效应管(FeFET)器件间的变化。我们得出结论,在器件缩放的FeFET阵列中,内存窗口的关闭可归因于:1)有限的域数量;2)域间差异;3)个体域切换的固有随机性。为了实现FeFET的进一步缩放,提出了从材料、工艺和器件操作来控制变化的共同优化方法:i)通过材料/工艺优化(例如降低沉积温度等)增加畴的数量;Ii)改善域的均匀性(例如最小化域的尺寸变化和缺陷分布等);Iii)增加脉冲幅度/宽度,以确保各个域的确定性切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental Understanding and Control of Device-to-Device Variation in Deeply Scaled Ferroelectric FETs
In this work, we present a comprehensive Kinetic Monte Carlo (KMC) modeling based statistical framework to evaluate the device-to-device variation of thin-film HfO2 ferroelectric FET (FeFET). We conclude that the closing of the memory window in a FeFET array with device scaling can be attributed to: 1) limited number of domains; 2) variation among domains; 3) intrinsic stochasticity of individual domain switching. To enable further scaling of FeFET, co-optimization approaches from material, process, and device operation to control variation are proposed: i) increase the number of domains through material/process optimization (e.g. decrease of deposition temperature, etc.); ii) improve the uniformity of domains (e.g. minimizing the domain size variation and defect distribution, etc.); iii) increase the pulse amplitude/width to ensure deterministic switching of individual domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信