证明语法引导综合问题不可实现性的精确和近似方法

Qinheping Hu, John Cyphert, Loris D'antoni, T. Reps
{"title":"证明语法引导综合问题不可实现性的精确和近似方法","authors":"Qinheping Hu, John Cyphert, Loris D'antoni, T. Reps","doi":"10.1145/3385412.3385979","DOIUrl":null,"url":null,"abstract":"We consider the problem of automatically establishing that a given syntax-guided-synthesis (SyGuS) problem is unrealizable (i.e., has no solution). We formulate the problem of proving that a SyGuS problem is unrealizable over a finite set of examples as one of solving a set of equations: the solution yields an overapproximation of the set of possible outputs that any term in the search space can produce on the given examples. If none of the possible outputs agrees with all of the examples, our technique has proven that the given SyGuS problem is unrealizable. We then present an algorithm for exactly solving the set of equations that result from SyGuS problems over linear integer arithmetic (LIA) and LIA with conditionals (CLIA), thereby showing that LIA and CLIA SyGuS problems over finitely many examples are decidable. We implement the proposed technique and algorithms in a tool called Nay. Nay can prove unrealizability for 70/132 existing SyGuS benchmarks, with running times comparable to those of the state-of-the-art tool Nope. Moreover, Nay can solve 11 benchmarks that Nope cannot solve.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Exact and approximate methods for proving unrealizability of syntax-guided synthesis problems\",\"authors\":\"Qinheping Hu, John Cyphert, Loris D'antoni, T. Reps\",\"doi\":\"10.1145/3385412.3385979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of automatically establishing that a given syntax-guided-synthesis (SyGuS) problem is unrealizable (i.e., has no solution). We formulate the problem of proving that a SyGuS problem is unrealizable over a finite set of examples as one of solving a set of equations: the solution yields an overapproximation of the set of possible outputs that any term in the search space can produce on the given examples. If none of the possible outputs agrees with all of the examples, our technique has proven that the given SyGuS problem is unrealizable. We then present an algorithm for exactly solving the set of equations that result from SyGuS problems over linear integer arithmetic (LIA) and LIA with conditionals (CLIA), thereby showing that LIA and CLIA SyGuS problems over finitely many examples are decidable. We implement the proposed technique and algorithms in a tool called Nay. Nay can prove unrealizability for 70/132 existing SyGuS benchmarks, with running times comparable to those of the state-of-the-art tool Nope. Moreover, Nay can solve 11 benchmarks that Nope cannot solve.\",\"PeriodicalId\":20580,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3385412.3385979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3385979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们考虑自动确定给定语法引导合成(SyGuS)问题是不可实现的(即没有解决方案)的问题。我们将证明SyGuS问题在有限的例子集上是不可实现的问题表述为求解一组方程的问题之一:该解决方案产生了搜索空间中任何项在给定示例上可以产生的可能输出集的过近似值。如果没有一个可能的输出与所有示例一致,我们的技术已经证明给定的SyGuS问题是不可实现的。然后,我们提出了一种精确求解线性整数算法(LIA)和带条件的LIA (CLIA)上SyGuS问题的方程组的算法,从而证明了有限多个例子上的LIA和CLIA SyGuS问题是可决定的。我们在一个名为Nay的工具中实现了所提出的技术和算法。对于现有的70/132个SyGuS基准测试来说,Nay可以证明是不可实现的,其运行时间与最先进的工具相当。此外,“不”可以解决“不”无法解决的11个基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact and approximate methods for proving unrealizability of syntax-guided synthesis problems
We consider the problem of automatically establishing that a given syntax-guided-synthesis (SyGuS) problem is unrealizable (i.e., has no solution). We formulate the problem of proving that a SyGuS problem is unrealizable over a finite set of examples as one of solving a set of equations: the solution yields an overapproximation of the set of possible outputs that any term in the search space can produce on the given examples. If none of the possible outputs agrees with all of the examples, our technique has proven that the given SyGuS problem is unrealizable. We then present an algorithm for exactly solving the set of equations that result from SyGuS problems over linear integer arithmetic (LIA) and LIA with conditionals (CLIA), thereby showing that LIA and CLIA SyGuS problems over finitely many examples are decidable. We implement the proposed technique and algorithms in a tool called Nay. Nay can prove unrealizability for 70/132 existing SyGuS benchmarks, with running times comparable to those of the state-of-the-art tool Nope. Moreover, Nay can solve 11 benchmarks that Nope cannot solve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信