利用对偶原理对二维光子结构中TE散射建模的轮廓积分法进行扩展

J. Preibisch, C. Schuster
{"title":"利用对偶原理对二维光子结构中TE散射建模的轮廓积分法进行扩展","authors":"J. Preibisch, C. Schuster","doi":"10.1109/METAMATERIALS.2016.7746520","DOIUrl":null,"url":null,"abstract":"The Contour Integral Method (CIM) is a numerically efficient modeling technique for planar or infinitely extended two-dimensional (2-D) structures. In the optical regime, the CIM has already been adapted and applied for the modeling of TM<sub>0</sub><sup>z</sup>-mode scattering in photonic crystals. In this work the dual case of TE<sub>0</sub><sup>z</sup>-mode scattering is addressed. Making use of the duality principle, expressions for the behavior of the TE<sub>0</sub><sup>z</sup>-mode can be derived from the system matrices associated with the TE<sub>0</sub><sup>z</sup>-mode. This allows to reuse use formulas and program code written for the TE<sub>0</sub><sup>z</sup>-mode with minimal adjustments. The results are validated by comparison to full-wave simulations.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"37 1","pages":"292-294"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extension of the Contour Integral Method for the modeling of TE scattering in two-dimensional photonic structures using the duality principle\",\"authors\":\"J. Preibisch, C. Schuster\",\"doi\":\"10.1109/METAMATERIALS.2016.7746520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Contour Integral Method (CIM) is a numerically efficient modeling technique for planar or infinitely extended two-dimensional (2-D) structures. In the optical regime, the CIM has already been adapted and applied for the modeling of TM<sub>0</sub><sup>z</sup>-mode scattering in photonic crystals. In this work the dual case of TE<sub>0</sub><sup>z</sup>-mode scattering is addressed. Making use of the duality principle, expressions for the behavior of the TE<sub>0</sub><sup>z</sup>-mode can be derived from the system matrices associated with the TE<sub>0</sub><sup>z</sup>-mode. This allows to reuse use formulas and program code written for the TE<sub>0</sub><sup>z</sup>-mode with minimal adjustments. The results are validated by comparison to full-wave simulations.\",\"PeriodicalId\":6587,\"journal\":{\"name\":\"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)\",\"volume\":\"37 1\",\"pages\":\"292-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/METAMATERIALS.2016.7746520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METAMATERIALS.2016.7746520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

轮廓积分法(CIM)是一种高效的平面或无限扩展二维结构的数值建模技术。在光学领域,CIM已经被应用于光子晶体中tm0z模式散射的建模。本文讨论了te0z模式散射的双重情况。利用对偶原理,可以从与TE0z-mode相关的系统矩阵中导出TE0z-mode的行为表达式。这允许在最小的调整下重用为te0z模式编写的公式和程序代码。通过与全波模拟的对比,验证了结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension of the Contour Integral Method for the modeling of TE scattering in two-dimensional photonic structures using the duality principle
The Contour Integral Method (CIM) is a numerically efficient modeling technique for planar or infinitely extended two-dimensional (2-D) structures. In the optical regime, the CIM has already been adapted and applied for the modeling of TM0z-mode scattering in photonic crystals. In this work the dual case of TE0z-mode scattering is addressed. Making use of the duality principle, expressions for the behavior of the TE0z-mode can be derived from the system matrices associated with the TE0z-mode. This allows to reuse use formulas and program code written for the TE0z-mode with minimal adjustments. The results are validated by comparison to full-wave simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信