基于范例的语音转换的字典优化和聚类

Wei Sun, Yibiao Yu
{"title":"基于范例的语音转换的字典优化和聚类","authors":"Wei Sun, Yibiao Yu","doi":"10.1117/12.2574413","DOIUrl":null,"url":null,"abstract":"Exemplar-based voice conversion (VC) methods have several disadvantages: too many exemplars, phoneme mismatches, and low conversion efficiency. To solve these problems, this paper proposes a voice conversion method based on nonnegative matrix factorization (NMF) using Dictionary optimization and clustering, which applies low-resolution features instead of high-resolution features to construct dictionaries. Dictionary optimization based on minimizing cepstrum distortion selects some fitter exemplars from the original dictionary. Exemplar clustering divides the dictionary into multiple sub-dictionaries which have better representation based on feature parameters. The ARCTIC database is used for experiments. Results show that the proposed method can significantly improve the quality of converted speech while reducing the number of exemplars and improving efficiency.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"14 1","pages":"1152604 - 1152604-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dictionary optimization and clustering for exemplar-based voice conversion\",\"authors\":\"Wei Sun, Yibiao Yu\",\"doi\":\"10.1117/12.2574413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exemplar-based voice conversion (VC) methods have several disadvantages: too many exemplars, phoneme mismatches, and low conversion efficiency. To solve these problems, this paper proposes a voice conversion method based on nonnegative matrix factorization (NMF) using Dictionary optimization and clustering, which applies low-resolution features instead of high-resolution features to construct dictionaries. Dictionary optimization based on minimizing cepstrum distortion selects some fitter exemplars from the original dictionary. Exemplar clustering divides the dictionary into multiple sub-dictionaries which have better representation based on feature parameters. The ARCTIC database is used for experiments. Results show that the proposed method can significantly improve the quality of converted speech while reducing the number of exemplars and improving efficiency.\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"14 1\",\"pages\":\"1152604 - 1152604-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2574413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2574413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于样例的语音转换方法存在着样例过多、音素不匹配、转换效率低等缺点。为了解决这些问题,本文提出了一种基于字典优化和聚类的非负矩阵分解(NMF)的语音转换方法,该方法使用低分辨率特征代替高分辨率特征来构建字典。基于倒谱失真最小化的字典优化从原始字典中选择一些更合适的样本。范例聚类将字典根据特征参数划分为多个子字典,这些子字典具有更好的表示效果。北极数据库用于实验。结果表明,该方法在减少样本数量和提高效率的同时,显著提高了转换语音的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dictionary optimization and clustering for exemplar-based voice conversion
Exemplar-based voice conversion (VC) methods have several disadvantages: too many exemplars, phoneme mismatches, and low conversion efficiency. To solve these problems, this paper proposes a voice conversion method based on nonnegative matrix factorization (NMF) using Dictionary optimization and clustering, which applies low-resolution features instead of high-resolution features to construct dictionaries. Dictionary optimization based on minimizing cepstrum distortion selects some fitter exemplars from the original dictionary. Exemplar clustering divides the dictionary into multiple sub-dictionaries which have better representation based on feature parameters. The ARCTIC database is used for experiments. Results show that the proposed method can significantly improve the quality of converted speech while reducing the number of exemplars and improving efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信