TMJOAI:用于早期诊断颞下颌关节骨关节炎的人工网络智能工具。

Celia Le, Romain Deleat-Besson, Najla Al Turkestani, Lucia Cevidanes, Jonas Bianchi, Winston Zhang, Marcela Gurgel, Hina Shah, Juan Prieto, Tengfei Li
{"title":"TMJOAI:用于早期诊断颞下颌关节骨关节炎的人工网络智能工具。","authors":"Celia Le, Romain Deleat-Besson, Najla Al Turkestani, Lucia Cevidanes, Jonas Bianchi, Winston Zhang, Marcela Gurgel, Hina Shah, Juan Prieto, Tengfei Li","doi":"10.1007/978-3-030-90874-4_8","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis is a chronic disease that affects the temporomandibular joint (TMJ), causing chronic pain and disability. To diagnose patients suffering from this disease before advanced degradation of the bone, we developed a diagnostic tool called TMJOAI. This machine learning based algorithm is capable of classifying the health status TMJ in of patients using 52 clinical, biological and jaw condyle radiomic markers. The TMJOAI includes three parts. the feature preparation, selection and model evaluation. Feature generation includes the choice of radiomic features (condylar trabecular bone or mandibular fossa), the histogram matching of the images prior to the extraction of the radiomic markers, the generation of feature pairwise interaction, etc.; the feature selection are based on the p-values or AUCs of single features using the training data; the model evaluation compares multiple machine learning algorithms (e.g. regression-based, tree-based and boosting algorithms) from 10 times 5-fold cross validation. The best performance was achieved with averaging the predictions of XGBoost and LightGBM models; and the inclusion of 32 additional markers from the mandibular fossa of the joint improved the AUC prediction performance from 0.83 to 0.88. After cross-validation and testing, the tools presented here have been deployed on an open-source, web-based system, making it accessible to clinicians. TMJOAI allows users to add data and automatically train and update the machine learning models, and therefore improve their performance.</p>","PeriodicalId":93532,"journal":{"name":"Clinical image-based procedures, distributed and collaborative learning, artificial intelligence for combating COVID-19 and secure and privacy-preserving machine learning : 10th Workshop, CLIP 2021, Second Workshop, DCL 2021, First Work...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012403/pdf/","citationCount":"0","resultStr":"{\"title\":\"TMJOAI: An Artificial Web-Based Intelligence Tool for Early Diagnosis of the Temporomandibular Joint Osteoarthritis.\",\"authors\":\"Celia Le, Romain Deleat-Besson, Najla Al Turkestani, Lucia Cevidanes, Jonas Bianchi, Winston Zhang, Marcela Gurgel, Hina Shah, Juan Prieto, Tengfei Li\",\"doi\":\"10.1007/978-3-030-90874-4_8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis is a chronic disease that affects the temporomandibular joint (TMJ), causing chronic pain and disability. To diagnose patients suffering from this disease before advanced degradation of the bone, we developed a diagnostic tool called TMJOAI. This machine learning based algorithm is capable of classifying the health status TMJ in of patients using 52 clinical, biological and jaw condyle radiomic markers. The TMJOAI includes three parts. the feature preparation, selection and model evaluation. Feature generation includes the choice of radiomic features (condylar trabecular bone or mandibular fossa), the histogram matching of the images prior to the extraction of the radiomic markers, the generation of feature pairwise interaction, etc.; the feature selection are based on the p-values or AUCs of single features using the training data; the model evaluation compares multiple machine learning algorithms (e.g. regression-based, tree-based and boosting algorithms) from 10 times 5-fold cross validation. The best performance was achieved with averaging the predictions of XGBoost and LightGBM models; and the inclusion of 32 additional markers from the mandibular fossa of the joint improved the AUC prediction performance from 0.83 to 0.88. After cross-validation and testing, the tools presented here have been deployed on an open-source, web-based system, making it accessible to clinicians. TMJOAI allows users to add data and automatically train and update the machine learning models, and therefore improve their performance.</p>\",\"PeriodicalId\":93532,\"journal\":{\"name\":\"Clinical image-based procedures, distributed and collaborative learning, artificial intelligence for combating COVID-19 and secure and privacy-preserving machine learning : 10th Workshop, CLIP 2021, Second Workshop, DCL 2021, First Work...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012403/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical image-based procedures, distributed and collaborative learning, artificial intelligence for combating COVID-19 and secure and privacy-preserving machine learning : 10th Workshop, CLIP 2021, Second Workshop, DCL 2021, First Work...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-90874-4_8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical image-based procedures, distributed and collaborative learning, artificial intelligence for combating COVID-19 and secure and privacy-preserving machine learning : 10th Workshop, CLIP 2021, Second Workshop, DCL 2021, First Work...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-90874-4_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨关节炎是一种影响颞下颌关节(TMJ)的慢性疾病,可导致慢性疼痛和残疾。为了在骨质进一步退化之前诊断出这种疾病的患者,我们开发了一种名为 TMJOAI 的诊断工具。这种基于机器学习的算法能够利用 52 个临床、生物和颌骨放射学标记对患者的颞下颌关节健康状况进行分类。TMJOAI 包括三个部分:特征准备、选择和模型评估。特征生成包括放射学特征(髁突小梁骨或下颌窝)的选择、提取放射学标记前的图像直方图匹配、特征配对交互的生成等;特征选择基于使用训练数据的单个特征的 p 值或 AUC;模型评估通过 10 次 5 倍交叉验证对多种机器学习算法(如基于回归的算法、基于树的算法和提升算法)进行比较。XGBoost和LightGBM模型预测结果的平均值达到了最佳性能;而加入来自关节下颌窝的32个额外标记后,AUC预测性能从0.83提高到了0.88。经过交叉验证和测试后,本文介绍的工具已部署在一个开源的网络系统上,使临床医生可以使用。TMJOAI 允许用户添加数据并自动训练和更新机器学习模型,从而提高其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TMJOAI: An Artificial Web-Based Intelligence Tool for Early Diagnosis of the Temporomandibular Joint Osteoarthritis.

Osteoarthritis is a chronic disease that affects the temporomandibular joint (TMJ), causing chronic pain and disability. To diagnose patients suffering from this disease before advanced degradation of the bone, we developed a diagnostic tool called TMJOAI. This machine learning based algorithm is capable of classifying the health status TMJ in of patients using 52 clinical, biological and jaw condyle radiomic markers. The TMJOAI includes three parts. the feature preparation, selection and model evaluation. Feature generation includes the choice of radiomic features (condylar trabecular bone or mandibular fossa), the histogram matching of the images prior to the extraction of the radiomic markers, the generation of feature pairwise interaction, etc.; the feature selection are based on the p-values or AUCs of single features using the training data; the model evaluation compares multiple machine learning algorithms (e.g. regression-based, tree-based and boosting algorithms) from 10 times 5-fold cross validation. The best performance was achieved with averaging the predictions of XGBoost and LightGBM models; and the inclusion of 32 additional markers from the mandibular fossa of the joint improved the AUC prediction performance from 0.83 to 0.88. After cross-validation and testing, the tools presented here have been deployed on an open-source, web-based system, making it accessible to clinicians. TMJOAI allows users to add data and automatically train and update the machine learning models, and therefore improve their performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信