k-方差:方差的聚类概念

IF 1.9 Q1 MATHEMATICS, APPLIED
J. Solomon, Kristjan H. Greenewald, H. Nagaraja
{"title":"k-方差:方差的聚类概念","authors":"J. Solomon, Kristjan H. Greenewald, H. Nagaraja","doi":"10.1137/20m1385895","DOIUrl":null,"url":null,"abstract":"We introduce $k$-variance, a generalization of variance built on the machinery of random bipartite matchings. $K$-variance measures the expected cost of matching two sets of $k$ samples from a distribution to each other, capturing local rather than global information about a measure as $k$ increases; it is easily approximated stochastically using sampling and linear programming. In addition to defining $k$-variance and proving its basic properties, we provide in-depth analysis of this quantity in several key cases, including one-dimensional measures, clustered measures, and measures concentrated on low-dimensional subsets of $\\mathbb R^n$. We conclude with experiments and open problems motivated by this new way to summarize distributional shape.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"59 1","pages":"957-978"},"PeriodicalIF":1.9000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"k-Variance: A Clustered Notion of Variance\",\"authors\":\"J. Solomon, Kristjan H. Greenewald, H. Nagaraja\",\"doi\":\"10.1137/20m1385895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce $k$-variance, a generalization of variance built on the machinery of random bipartite matchings. $K$-variance measures the expected cost of matching two sets of $k$ samples from a distribution to each other, capturing local rather than global information about a measure as $k$ increases; it is easily approximated stochastically using sampling and linear programming. In addition to defining $k$-variance and proving its basic properties, we provide in-depth analysis of this quantity in several key cases, including one-dimensional measures, clustered measures, and measures concentrated on low-dimensional subsets of $\\\\mathbb R^n$. We conclude with experiments and open problems motivated by this new way to summarize distributional shape.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"59 1\",\"pages\":\"957-978\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20m1385895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1385895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

我们引入$k$-variance,一个建立在随机二部匹配机制上的方差的泛化。$K$-variance衡量从一个分布中匹配两组$K$样本的预期成本,随着$K$的增加,捕获有关度量的局部信息而不是全局信息;它很容易用抽样和线性规划进行随机逼近。除了定义$k$方差并证明其基本性质之外,我们还在几个关键情况下对这个量进行了深入分析,包括一维度量、聚类度量和集中在$\mathbb R^n$的低维子集上的度量。最后,我们用实验和开放性问题来总结这种新的分布形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
k-Variance: A Clustered Notion of Variance
We introduce $k$-variance, a generalization of variance built on the machinery of random bipartite matchings. $K$-variance measures the expected cost of matching two sets of $k$ samples from a distribution to each other, capturing local rather than global information about a measure as $k$ increases; it is easily approximated stochastically using sampling and linear programming. In addition to defining $k$-variance and proving its basic properties, we provide in-depth analysis of this quantity in several key cases, including one-dimensional measures, clustered measures, and measures concentrated on low-dimensional subsets of $\mathbb R^n$. We conclude with experiments and open problems motivated by this new way to summarize distributional shape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信