加权局部Morrey空间

IF 0.9 4区 数学 Q2 Mathematics
Shohei Nakamura, Y. Sawano, Hitoshi Tanaka
{"title":"加权局部Morrey空间","authors":"Shohei Nakamura, Y. Sawano, Hitoshi Tanaka","doi":"10.5186/aasfm.2020.4504","DOIUrl":null,"url":null,"abstract":"Abstract. We discuss the boundedness of linear and sublinear operators in two types of weighted local Morrey spaces. One is defined by Natasha Samko in 2008. The other is defined by Yasuo Komori-Furuya and Satoru Shirai in 2009. We characterize the class of weights for which the Hardy–Littlewood maximal operator is bounded. Under a certain integral condition it turns out that the singular integral operators are bounded if and only if the Hardy–Littlewood maximal operator is bounded. As an application of the characterization, the power weight function | · | is considered. The condition on α for which the Hardy–Littlewood maximal operator is bounded can be described completely.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Weighted local Morrey spaces\",\"authors\":\"Shohei Nakamura, Y. Sawano, Hitoshi Tanaka\",\"doi\":\"10.5186/aasfm.2020.4504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We discuss the boundedness of linear and sublinear operators in two types of weighted local Morrey spaces. One is defined by Natasha Samko in 2008. The other is defined by Yasuo Komori-Furuya and Satoru Shirai in 2009. We characterize the class of weights for which the Hardy–Littlewood maximal operator is bounded. Under a certain integral condition it turns out that the singular integral operators are bounded if and only if the Hardy–Littlewood maximal operator is bounded. As an application of the characterization, the power weight function | · | is considered. The condition on α for which the Hardy–Littlewood maximal operator is bounded can be described completely.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4504\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4504","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10

摘要

摘要讨论了两类加权局部Morrey空间中线性算子和次线性算子的有界性。其中一个是由Natasha Samko在2008年定义的。另一个是由小森古屋康夫和白井聪在2009年定义的。我们刻画了Hardy-Littlewood极大算子有界的一类权值。在一定的积分条件下,证明奇异积分算子当且仅当Hardy-Littlewood极大算子有界时是有界的。作为表征的一个应用,我们考虑幂权函数|·|。可以完整地描述α上Hardy-Littlewood极大算子有界的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted local Morrey spaces
Abstract. We discuss the boundedness of linear and sublinear operators in two types of weighted local Morrey spaces. One is defined by Natasha Samko in 2008. The other is defined by Yasuo Komori-Furuya and Satoru Shirai in 2009. We characterize the class of weights for which the Hardy–Littlewood maximal operator is bounded. Under a certain integral condition it turns out that the singular integral operators are bounded if and only if the Hardy–Littlewood maximal operator is bounded. As an application of the characterization, the power weight function | · | is considered. The condition on α for which the Hardy–Littlewood maximal operator is bounded can be described completely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信