{"title":"加权局部Morrey空间","authors":"Shohei Nakamura, Y. Sawano, Hitoshi Tanaka","doi":"10.5186/aasfm.2020.4504","DOIUrl":null,"url":null,"abstract":"Abstract. We discuss the boundedness of linear and sublinear operators in two types of weighted local Morrey spaces. One is defined by Natasha Samko in 2008. The other is defined by Yasuo Komori-Furuya and Satoru Shirai in 2009. We characterize the class of weights for which the Hardy–Littlewood maximal operator is bounded. Under a certain integral condition it turns out that the singular integral operators are bounded if and only if the Hardy–Littlewood maximal operator is bounded. As an application of the characterization, the power weight function | · | is considered. The condition on α for which the Hardy–Littlewood maximal operator is bounded can be described completely.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Weighted local Morrey spaces\",\"authors\":\"Shohei Nakamura, Y. Sawano, Hitoshi Tanaka\",\"doi\":\"10.5186/aasfm.2020.4504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We discuss the boundedness of linear and sublinear operators in two types of weighted local Morrey spaces. One is defined by Natasha Samko in 2008. The other is defined by Yasuo Komori-Furuya and Satoru Shirai in 2009. We characterize the class of weights for which the Hardy–Littlewood maximal operator is bounded. Under a certain integral condition it turns out that the singular integral operators are bounded if and only if the Hardy–Littlewood maximal operator is bounded. As an application of the characterization, the power weight function | · | is considered. The condition on α for which the Hardy–Littlewood maximal operator is bounded can be described completely.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4504\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4504","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Abstract. We discuss the boundedness of linear and sublinear operators in two types of weighted local Morrey spaces. One is defined by Natasha Samko in 2008. The other is defined by Yasuo Komori-Furuya and Satoru Shirai in 2009. We characterize the class of weights for which the Hardy–Littlewood maximal operator is bounded. Under a certain integral condition it turns out that the singular integral operators are bounded if and only if the Hardy–Littlewood maximal operator is bounded. As an application of the characterization, the power weight function | · | is considered. The condition on α for which the Hardy–Littlewood maximal operator is bounded can be described completely.
期刊介绍:
Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio.
AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.