奇偶树的算术

Paul Tarau
{"title":"奇偶树的算术","authors":"Paul Tarau","doi":"10.1109/SYNASC.2015.23","DOIUrl":null,"url":null,"abstract":"Even-Odd Trees are a canonical tree-based number representation derived from a bijection between trees defined by the data type equation T = 1+T *T* +T *T* and positive natural numbers seen as iterated applications of o(x) = 2x and i(x) = 2x + 1 starting from 1. This paper introduces purely functional arithmetic algorithms for operations on Even-Odd Trees. While within constant factors from their traditional counterparts for their average case behavior, our algorithms make tractable important computations that are impossible with traditional number representations.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"6 1","pages":"90-97"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Arithmetic of Even-Odd Trees\",\"authors\":\"Paul Tarau\",\"doi\":\"10.1109/SYNASC.2015.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even-Odd Trees are a canonical tree-based number representation derived from a bijection between trees defined by the data type equation T = 1+T *T* +T *T* and positive natural numbers seen as iterated applications of o(x) = 2x and i(x) = 2x + 1 starting from 1. This paper introduces purely functional arithmetic algorithms for operations on Even-Odd Trees. While within constant factors from their traditional counterparts for their average case behavior, our algorithms make tractable important computations that are impossible with traditional number representations.\",\"PeriodicalId\":6488,\"journal\":{\"name\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"6 1\",\"pages\":\"90-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2015.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

奇偶树是一种规范的基于树的数字表示,它来源于数据类型方程T = 1+T *T* +T *T*定义的树之间的双射,而正自然数被视为从1开始的o(x) = 2x和i(x) = 2x + 1的迭代应用。本文介绍了奇偶树运算的纯泛函算法。虽然在其平均情况行为的传统对立物的恒定因素内,我们的算法可以进行传统数字表示不可能进行的易于处理的重要计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Arithmetic of Even-Odd Trees
Even-Odd Trees are a canonical tree-based number representation derived from a bijection between trees defined by the data type equation T = 1+T *T* +T *T* and positive natural numbers seen as iterated applications of o(x) = 2x and i(x) = 2x + 1 starting from 1. This paper introduces purely functional arithmetic algorithms for operations on Even-Odd Trees. While within constant factors from their traditional counterparts for their average case behavior, our algorithms make tractable important computations that are impossible with traditional number representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信