基于体积膨胀的可再生资源纳米复合材料双/双段固化研究

Fabio Blaschke, P. Marx, F. Wiesbrock
{"title":"基于体积膨胀的可再生资源纳米复合材料双/双段固化研究","authors":"Fabio Blaschke, P. Marx, F. Wiesbrock","doi":"10.3390/CGPM2020-07161","DOIUrl":null,"url":null,"abstract":"Nowadays, polymers used in technical applications are still obtained from petrochemicals, despite the more critical reviews from society. In this work, novel nanodielectrics based on renewable resources were developed. For this purpose, poly(2-oxazoline)s (POx), which can be referred to as pseudo-polyamides, were synthesized from renewable resources and compared with commercially available Nylon 12, which is derived from petrochemicals. The monomers 2-nonyl-2-oxazoline and 2-dec-9′-enyl-2-oxazoline were synthesized from coconut oil and castor oil in solvent-free syntheses according to the Henkel Patent; the corresponding copoly(2-oxazoline)s were synthesized in an energy-efficient fashion in microwave reactors under autoclave conditions. Both types of polyamides (two variations: POx and Nylon 12) were filled with inorganic nanoparticles (four variations: no filler, submicro-scaled BN, nano- and micro-scaled AlN as well as a mixture of nano- and micro-scaled AlN and submicro-scaled BN) and/or expanding monomers, namely spiroorthoesters (three variations: 0, 15, and 30 wt.-%), yielding a 2 × 4 × 3 = 24-membered material library. All polymers were crosslinked according to a newly developed thermally-initiated dual/bi-stage curing system. Intense physicochemical and dielectric characterization revealed that the relative volume expansion was in the range of 0.46 to 2.48 vol.-% for the Nylon 12 samples and in the range of 1.39 to 7.69 vol.-% for the POx samples. Hence, the formation micro-cracks or micro-voids during curing is significantly reduced. The dielectric measurements show competitive dielectric behavior of the “green” POx samples in comparison with the fossil-based Nylon 12 samples at a frequency of 40 Hz.","PeriodicalId":20633,"journal":{"name":"Proceedings of The First International Conference on “Green” Polymer Materials 2020","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual/Bi-Stage Curing of Nanocomposites from Renewable Resources upon Volumetric Expansion\",\"authors\":\"Fabio Blaschke, P. Marx, F. Wiesbrock\",\"doi\":\"10.3390/CGPM2020-07161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, polymers used in technical applications are still obtained from petrochemicals, despite the more critical reviews from society. In this work, novel nanodielectrics based on renewable resources were developed. For this purpose, poly(2-oxazoline)s (POx), which can be referred to as pseudo-polyamides, were synthesized from renewable resources and compared with commercially available Nylon 12, which is derived from petrochemicals. The monomers 2-nonyl-2-oxazoline and 2-dec-9′-enyl-2-oxazoline were synthesized from coconut oil and castor oil in solvent-free syntheses according to the Henkel Patent; the corresponding copoly(2-oxazoline)s were synthesized in an energy-efficient fashion in microwave reactors under autoclave conditions. Both types of polyamides (two variations: POx and Nylon 12) were filled with inorganic nanoparticles (four variations: no filler, submicro-scaled BN, nano- and micro-scaled AlN as well as a mixture of nano- and micro-scaled AlN and submicro-scaled BN) and/or expanding monomers, namely spiroorthoesters (three variations: 0, 15, and 30 wt.-%), yielding a 2 × 4 × 3 = 24-membered material library. All polymers were crosslinked according to a newly developed thermally-initiated dual/bi-stage curing system. Intense physicochemical and dielectric characterization revealed that the relative volume expansion was in the range of 0.46 to 2.48 vol.-% for the Nylon 12 samples and in the range of 1.39 to 7.69 vol.-% for the POx samples. Hence, the formation micro-cracks or micro-voids during curing is significantly reduced. The dielectric measurements show competitive dielectric behavior of the “green” POx samples in comparison with the fossil-based Nylon 12 samples at a frequency of 40 Hz.\",\"PeriodicalId\":20633,\"journal\":{\"name\":\"Proceedings of The First International Conference on “Green” Polymer Materials 2020\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The First International Conference on “Green” Polymer Materials 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/CGPM2020-07161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The First International Conference on “Green” Polymer Materials 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/CGPM2020-07161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,技术应用中使用的聚合物仍然是从石油化工中获得的,尽管社会上有更多的批评。本研究开发了基于可再生资源的新型纳米介电材料。为此,利用可再生资源合成了聚(2-恶唑啉)s (POx),可称为伪聚酰胺,并与市售的来自石油化工产品的尼龙12进行了比较。根据汉高专利,以椰子油和蓖麻油为原料,无溶剂合成了2-壬基-2-恶唑啉和2-癸-9′-烯基-2-恶唑啉单体;在微波釜中以高效节能的方式合成了相应的2-恶唑啉共聚物。两种类型的聚酰胺(两种变体:POx和Nylon 12)都填充了无机纳米颗粒(四种变体:无填料、亚微尺度BN、纳米和微尺度AlN以及纳米和微尺度AlN和亚微尺度BN的混合物)和/或膨胀单体,即螺固酯(三种变体:0、15和30 wt.-%),从而产生了一个2 × 4 × 3 = 24元的材料库。所有聚合物都是根据新开发的热引发双/双级固化体系交联的。物理化学和介电特性表明,尼龙12样品的相对体积膨胀率在0.46 ~ 2.48 vol.-%之间,而POx样品的相对体积膨胀率在1.39 ~ 7.69 vol.-%之间。因此,大大减少了固化过程中微裂纹或微空洞的形成。电介质测量显示,在40 Hz频率下,与化石基尼龙12样品相比,“绿色”痘样品具有竞争性的电介质行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual/Bi-Stage Curing of Nanocomposites from Renewable Resources upon Volumetric Expansion
Nowadays, polymers used in technical applications are still obtained from petrochemicals, despite the more critical reviews from society. In this work, novel nanodielectrics based on renewable resources were developed. For this purpose, poly(2-oxazoline)s (POx), which can be referred to as pseudo-polyamides, were synthesized from renewable resources and compared with commercially available Nylon 12, which is derived from petrochemicals. The monomers 2-nonyl-2-oxazoline and 2-dec-9′-enyl-2-oxazoline were synthesized from coconut oil and castor oil in solvent-free syntheses according to the Henkel Patent; the corresponding copoly(2-oxazoline)s were synthesized in an energy-efficient fashion in microwave reactors under autoclave conditions. Both types of polyamides (two variations: POx and Nylon 12) were filled with inorganic nanoparticles (four variations: no filler, submicro-scaled BN, nano- and micro-scaled AlN as well as a mixture of nano- and micro-scaled AlN and submicro-scaled BN) and/or expanding monomers, namely spiroorthoesters (three variations: 0, 15, and 30 wt.-%), yielding a 2 × 4 × 3 = 24-membered material library. All polymers were crosslinked according to a newly developed thermally-initiated dual/bi-stage curing system. Intense physicochemical and dielectric characterization revealed that the relative volume expansion was in the range of 0.46 to 2.48 vol.-% for the Nylon 12 samples and in the range of 1.39 to 7.69 vol.-% for the POx samples. Hence, the formation micro-cracks or micro-voids during curing is significantly reduced. The dielectric measurements show competitive dielectric behavior of the “green” POx samples in comparison with the fossil-based Nylon 12 samples at a frequency of 40 Hz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信