通过多维跟踪分析为企业存储系统设计含义

Yanpei Chen, Kiran Srinivasan, G. Goodson, R. Katz
{"title":"通过多维跟踪分析为企业存储系统设计含义","authors":"Yanpei Chen, Kiran Srinivasan, G. Goodson, R. Katz","doi":"10.1145/2043556.2043562","DOIUrl":null,"url":null,"abstract":"Enterprise storage systems are facing enormous challenges due to increasing growth and heterogeneity of the data stored. Designing future storage systems requires comprehensive insights that existing trace analysis methods are ill-equipped to supply. In this paper, we seek to provide such insights by using a new methodology that leverages an objective, multi-dimensional statistical technique to extract data access patterns from network storage system traces. We apply our method on two large-scale real-world production network storage system traces to obtain comprehensive access patterns and design insights at user, application, file, and directory levels. We derive simple, easily implementable, threshold-based design optimizations that enable efficient data placement and capacity optimization strategies for servers, consolidation policies for clients, and improved caching performance for both.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Design implications for enterprise storage systems via multi-dimensional trace analysis\",\"authors\":\"Yanpei Chen, Kiran Srinivasan, G. Goodson, R. Katz\",\"doi\":\"10.1145/2043556.2043562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enterprise storage systems are facing enormous challenges due to increasing growth and heterogeneity of the data stored. Designing future storage systems requires comprehensive insights that existing trace analysis methods are ill-equipped to supply. In this paper, we seek to provide such insights by using a new methodology that leverages an objective, multi-dimensional statistical technique to extract data access patterns from network storage system traces. We apply our method on two large-scale real-world production network storage system traces to obtain comprehensive access patterns and design insights at user, application, file, and directory levels. We derive simple, easily implementable, threshold-based design optimizations that enable efficient data placement and capacity optimization strategies for servers, consolidation policies for clients, and improved caching performance for both.\",\"PeriodicalId\":20672,\"journal\":{\"name\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2043556.2043562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2043556.2043562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

由于存储数据的增长和异构性,企业存储系统面临着巨大的挑战。设计未来的存储系统需要全面的洞察力,现有的痕迹分析方法无法提供。在本文中,我们试图通过使用一种新的方法来提供这样的见解,该方法利用客观的多维统计技术从网络存储系统痕迹中提取数据访问模式。我们将我们的方法应用于两个大规模的实际生产网络存储系统跟踪,以获得用户、应用程序、文件和目录级别的全面访问模式和设计见解。我们推导出简单的、易于实现的、基于阈值的设计优化,这些优化为服务器提供了有效的数据放置和容量优化策略,为客户端提供了整合策略,并改进了两者的缓存性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design implications for enterprise storage systems via multi-dimensional trace analysis
Enterprise storage systems are facing enormous challenges due to increasing growth and heterogeneity of the data stored. Designing future storage systems requires comprehensive insights that existing trace analysis methods are ill-equipped to supply. In this paper, we seek to provide such insights by using a new methodology that leverages an objective, multi-dimensional statistical technique to extract data access patterns from network storage system traces. We apply our method on two large-scale real-world production network storage system traces to obtain comprehensive access patterns and design insights at user, application, file, and directory levels. We derive simple, easily implementable, threshold-based design optimizations that enable efficient data placement and capacity optimization strategies for servers, consolidation policies for clients, and improved caching performance for both.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信