带状叶氏-德林菲尔德模块和缠结不变量

IF 0.5 3区 数学 Q3 MATHEMATICS
K. Habiro, Yuka Kotorii
{"title":"带状叶氏-德林菲尔德模块和缠结不变量","authors":"K. Habiro, Yuka Kotorii","doi":"10.1142/s179352532350019x","DOIUrl":null,"url":null,"abstract":"We define notions of pivotal and ribbon objects in a monoidal category. These constructions give pivotal or ribbon monoidal categories from a monoidal category which is not necessarily with duals. We apply this construction to the braided monoidal category of Yetter--Drinfeld modules over a Hopf algebra. This gives rise to the notion of ribbon Yetter--Drinfeld modules over a Hopf algebra, which form ribbon categories. This gives an invariant of tangles.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ribbon Yetter–Drinfeld modules and tangle invariants\",\"authors\":\"K. Habiro, Yuka Kotorii\",\"doi\":\"10.1142/s179352532350019x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define notions of pivotal and ribbon objects in a monoidal category. These constructions give pivotal or ribbon monoidal categories from a monoidal category which is not necessarily with duals. We apply this construction to the braided monoidal category of Yetter--Drinfeld modules over a Hopf algebra. This gives rise to the notion of ribbon Yetter--Drinfeld modules over a Hopf algebra, which form ribbon categories. This gives an invariant of tangles.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s179352532350019x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s179352532350019x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在一元范畴中定义了枢纽对象和带状对象的概念。这些构造从不一定具有对偶的单一性范畴中给出枢纽或带状单一性范畴。我们将这种构造应用于Hopf代数上的Yetter—Drinfeld模的编织一元范畴。这就产生了Hopf代数上的带状Yetter- Drinfeld模块的概念,它形成了带状类别。这给出了缠结的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ribbon Yetter–Drinfeld modules and tangle invariants
We define notions of pivotal and ribbon objects in a monoidal category. These constructions give pivotal or ribbon monoidal categories from a monoidal category which is not necessarily with duals. We apply this construction to the braided monoidal category of Yetter--Drinfeld modules over a Hopf algebra. This gives rise to the notion of ribbon Yetter--Drinfeld modules over a Hopf algebra, which form ribbon categories. This gives an invariant of tangles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信