分布(Δ +1)-次对数轮的着色

David G. Harris, Johannes Schneider, Hsin-Hao Su
{"title":"分布(Δ +1)-次对数轮的着色","authors":"David G. Harris, Johannes Schneider, Hsin-Hao Su","doi":"10.1145/3178120","DOIUrl":null,"url":null,"abstract":"We give a new randomized distributed algorithm for (Δ +1)-coloring in the LOCAL model, running in O(√ log Δ)+ 2O(√log log n) rounds in a graph of maximum degree Δ. This implies that the (Δ +1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds of Ω(min(√/log n log log n, /log Δ log log Δ)) by Kuhn, Moscibroda, and Wattenhofer [PODC’04]. Our algorithm also extends to list-coloring where the palette of each node contains Δ +1 colors. We extend the set of distributed symmetry-breaking techniques by performing a decomposition of graphs into dense and sparse parts.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Distributed (Δ +1)-Coloring in Sublogarithmic Rounds\",\"authors\":\"David G. Harris, Johannes Schneider, Hsin-Hao Su\",\"doi\":\"10.1145/3178120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a new randomized distributed algorithm for (Δ +1)-coloring in the LOCAL model, running in O(√ log Δ)+ 2O(√log log n) rounds in a graph of maximum degree Δ. This implies that the (Δ +1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds of Ω(min(√/log n log log n, /log Δ log log Δ)) by Kuhn, Moscibroda, and Wattenhofer [PODC’04]. Our algorithm also extends to list-coloring where the palette of each node contains Δ +1 colors. We extend the set of distributed symmetry-breaking techniques by performing a decomposition of graphs into dense and sparse parts.\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在LOCAL模型中,我们给出了一种新的(Δ +1)-着色的随机分布算法,该算法在最大次为Δ的图上运行O(√log Δ)+ 2O(√log log n)轮。这意味着(Δ +1)着色问题比最大独立集问题和最大匹配问题更容易,因为Kuhn、Moscibroda和Wattenhofer [PODC ' 04]给出了它们的下界Ω(min(√/log n log log n, /log Δ log log Δ))。我们的算法还扩展到列表着色,其中每个节点的调色板包含Δ +1种颜色。我们通过将图分解为密集部分和稀疏部分来扩展分布式对称打破技术集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed (Δ +1)-Coloring in Sublogarithmic Rounds
We give a new randomized distributed algorithm for (Δ +1)-coloring in the LOCAL model, running in O(√ log Δ)+ 2O(√log log n) rounds in a graph of maximum degree Δ. This implies that the (Δ +1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds of Ω(min(√/log n log log n, /log Δ log log Δ)) by Kuhn, Moscibroda, and Wattenhofer [PODC’04]. Our algorithm also extends to list-coloring where the palette of each node contains Δ +1 colors. We extend the set of distributed symmetry-breaking techniques by performing a decomposition of graphs into dense and sparse parts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信