持续经济系统中预测回归的一致性推论

T. Andersen, R. T. Varneskov
{"title":"持续经济系统中预测回归的一致性推论","authors":"T. Andersen, R. T. Varneskov","doi":"10.2139/ssrn.3359946","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies standard predictive regressions in economic systems governed by persistent vector autoregressive dynamics for the state variables. In particular, all – or a subset – of the variables may be fractionally integrated, which induces a spurious regression problem. We propose a new inference and testing procedure – the Local speCtruM (LCM) approach – for joint significance of the regressors, that is robust against the variables having different integration orders and remains valid regardless of whether predictors are significant and, if they are, whether they induce cointegration. Specifically, the LCM procedure is based on fractional filtering and band spectrum regression using a suitably selected set of frequency ordinates. Contrary to existing procedures, we establish a uniform Gaussian limit theory and a standard χ 2 -distributed test statistic. Using the LCM inference and testing techniques, we explore predictive regressions for the realized return variation. Standard least squares inference indicates that popular financial and macroeconomic variables convey valuable information about future return volatility. In contrast, we find no significant evidence using our robust LCM procedure. If anything, our tests support a reverse chain of causality, with rising financial volatility predating adverse innovations to key macroeconomic variables. Simulations are employed to illustrate the relevance of the theoretical arguments for finite-sample inference.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Consistent Inference for Predictive Regressions in Persistent Economic Systems\",\"authors\":\"T. Andersen, R. T. Varneskov\",\"doi\":\"10.2139/ssrn.3359946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies standard predictive regressions in economic systems governed by persistent vector autoregressive dynamics for the state variables. In particular, all – or a subset – of the variables may be fractionally integrated, which induces a spurious regression problem. We propose a new inference and testing procedure – the Local speCtruM (LCM) approach – for joint significance of the regressors, that is robust against the variables having different integration orders and remains valid regardless of whether predictors are significant and, if they are, whether they induce cointegration. Specifically, the LCM procedure is based on fractional filtering and band spectrum regression using a suitably selected set of frequency ordinates. Contrary to existing procedures, we establish a uniform Gaussian limit theory and a standard χ 2 -distributed test statistic. Using the LCM inference and testing techniques, we explore predictive regressions for the realized return variation. Standard least squares inference indicates that popular financial and macroeconomic variables convey valuable information about future return volatility. In contrast, we find no significant evidence using our robust LCM procedure. If anything, our tests support a reverse chain of causality, with rising financial volatility predating adverse innovations to key macroeconomic variables. Simulations are employed to illustrate the relevance of the theoretical arguments for finite-sample inference.\",\"PeriodicalId\":11465,\"journal\":{\"name\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3359946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3359946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

摘要本文研究了状态变量为持续向量自回归动力学的经济系统的标准预测回归。特别地,所有或一部分变量可能是分数积分的,这会导致伪回归问题。我们提出了一种新的推理和测试程序-局部谱(LCM)方法-回归量的联合显著性,它对具有不同积分顺序的变量具有鲁棒性,并且无论预测因子是否显著,如果是,它们是否诱导协整,都保持有效。具体来说,LCM过程是基于分数滤波和频带频谱回归,使用一组适当选择的频率坐标。与现有程序相反,我们建立了均匀高斯极限理论和标准χ 2分布检验统计量。利用LCM推理和测试技术,我们探索了实现回报变化的预测回归。标准最小二乘推断表明,流行的金融和宏观经济变量传达了有关未来收益波动的有价值信息。相比之下,我们发现没有显著的证据使用我们稳健的LCM程序。如果有的话,我们的测试支持反向因果链,金融波动性上升先于关键宏观经济变量的不利创新。模拟被用来说明有限样本推理的理论论点的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consistent Inference for Predictive Regressions in Persistent Economic Systems
Abstract This paper studies standard predictive regressions in economic systems governed by persistent vector autoregressive dynamics for the state variables. In particular, all – or a subset – of the variables may be fractionally integrated, which induces a spurious regression problem. We propose a new inference and testing procedure – the Local speCtruM (LCM) approach – for joint significance of the regressors, that is robust against the variables having different integration orders and remains valid regardless of whether predictors are significant and, if they are, whether they induce cointegration. Specifically, the LCM procedure is based on fractional filtering and band spectrum regression using a suitably selected set of frequency ordinates. Contrary to existing procedures, we establish a uniform Gaussian limit theory and a standard χ 2 -distributed test statistic. Using the LCM inference and testing techniques, we explore predictive regressions for the realized return variation. Standard least squares inference indicates that popular financial and macroeconomic variables convey valuable information about future return volatility. In contrast, we find no significant evidence using our robust LCM procedure. If anything, our tests support a reverse chain of causality, with rising financial volatility predating adverse innovations to key macroeconomic variables. Simulations are employed to illustrate the relevance of the theoretical arguments for finite-sample inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信