弱监督可视性检测

Johann Sawatzky, A. Srikantha, Juergen Gall
{"title":"弱监督可视性检测","authors":"Johann Sawatzky, A. Srikantha, Juergen Gall","doi":"10.1109/CVPR.2017.552","DOIUrl":null,"url":null,"abstract":"Localizing functional regions of objects or affordances is an important aspect of scene understanding and relevant for many robotics applications. In this work, we introduce a pixel-wise annotated affordance dataset of 3090 images containing 9916 object instances. Since parts of an object can have multiple affordances, we address this by a convolutional neural network for multilabel affordance segmentation. We also propose an approach to train the network from very few keypoint annotations. Our approach achieves a higher affordance detection accuracy than other weakly supervised methods that also rely on keypoint annotations or image annotations as weak supervision.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"13 1","pages":"5197-5206"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Weakly Supervised Affordance Detection\",\"authors\":\"Johann Sawatzky, A. Srikantha, Juergen Gall\",\"doi\":\"10.1109/CVPR.2017.552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localizing functional regions of objects or affordances is an important aspect of scene understanding and relevant for many robotics applications. In this work, we introduce a pixel-wise annotated affordance dataset of 3090 images containing 9916 object instances. Since parts of an object can have multiple affordances, we address this by a convolutional neural network for multilabel affordance segmentation. We also propose an approach to train the network from very few keypoint annotations. Our approach achieves a higher affordance detection accuracy than other weakly supervised methods that also rely on keypoint annotations or image annotations as weak supervision.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"13 1\",\"pages\":\"5197-5206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

定位物体或启示的功能区域是场景理解的一个重要方面,与许多机器人应用相关。在这项工作中,我们引入了一个包含9916个对象实例的3090张图像的逐像素注释的可视性数据集。由于一个对象的部分可以有多个启示,我们通过卷积神经网络来解决这个问题,用于多标签启示分割。我们还提出了一种从很少的关键点注释中训练网络的方法。与其他同样依赖关键点标注或图像标注作为弱监督的弱监督方法相比,我们的方法实现了更高的可视性检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly Supervised Affordance Detection
Localizing functional regions of objects or affordances is an important aspect of scene understanding and relevant for many robotics applications. In this work, we introduce a pixel-wise annotated affordance dataset of 3090 images containing 9916 object instances. Since parts of an object can have multiple affordances, we address this by a convolutional neural network for multilabel affordance segmentation. We also propose an approach to train the network from very few keypoint annotations. Our approach achieves a higher affordance detection accuracy than other weakly supervised methods that also rely on keypoint annotations or image annotations as weak supervision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信