压缩空气驱动背压型压电能量采集器的性能研究。

Yingting Wang, Zi Wang, Gang Bao
{"title":"压缩空气驱动背压型压电能量采集器的性能研究。","authors":"Yingting Wang, Zi Wang, Gang Bao","doi":"10.1063/5.0086093","DOIUrl":null,"url":null,"abstract":"A piezoelectric energy harvester with backpressure pre-loaded is designed to investigate the performance that can be driven by the compressed air load in the pneumatic system. The power generation principle and microelement mechanics model are established, which can explain the principle that backpressure changes the internal energy of materials. The backpressure affects the internal stress of materials. The electromechanical coupling coefficient can be adjusted by the backpressure. The power generation obviously changes as the electromechanical coupling coefficient is adjusted. An experimental testing system is established, and the experimental results are analyzed to prove the effect of backpressure on the output power. There is a linear relationship between the peak voltage and backpressure. When the backpressure increases every 1 kPa, the voltage increases by 0.667 V. The voltage increment under backpressure is 5.13 times that without backpressure. The optimal output power is 12.3 mW in 30 kPa backpressure pre-load. The output power increases to the original 237% under the backpressure. The prototype can directly supply energy to the temperature sensor, and it can supply power to a magnetic switch with capacitor energy storage.","PeriodicalId":54761,"journal":{"name":"Journal of the Optical Society of America and Review of Scientific Instruments","volume":"14 1","pages":"055003"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation on behavior of the backpressure based piezoelectric energy harvester driven by compressed air.\",\"authors\":\"Yingting Wang, Zi Wang, Gang Bao\",\"doi\":\"10.1063/5.0086093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A piezoelectric energy harvester with backpressure pre-loaded is designed to investigate the performance that can be driven by the compressed air load in the pneumatic system. The power generation principle and microelement mechanics model are established, which can explain the principle that backpressure changes the internal energy of materials. The backpressure affects the internal stress of materials. The electromechanical coupling coefficient can be adjusted by the backpressure. The power generation obviously changes as the electromechanical coupling coefficient is adjusted. An experimental testing system is established, and the experimental results are analyzed to prove the effect of backpressure on the output power. There is a linear relationship between the peak voltage and backpressure. When the backpressure increases every 1 kPa, the voltage increases by 0.667 V. The voltage increment under backpressure is 5.13 times that without backpressure. The optimal output power is 12.3 mW in 30 kPa backpressure pre-load. The output power increases to the original 237% under the backpressure. The prototype can directly supply energy to the temperature sensor, and it can supply power to a magnetic switch with capacitor energy storage.\",\"PeriodicalId\":54761,\"journal\":{\"name\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"volume\":\"14 1\",\"pages\":\"055003\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0086093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America and Review of Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0086093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设计了一种背压预加载的压电能量采集器,研究了气动系统中压缩空气载荷的驱动性能。建立了发电原理和微元素力学模型,可以解释背压改变材料内能的原理。背压影响材料的内应力。机电耦合系数可通过背压调节。随着机电耦合系数的调整,发电量变化明显。建立了实验测试系统,并对实验结果进行了分析,验证了背压对输出功率的影响。峰值电压与背压之间呈线性关系。当背压每增加1kpa,电压增加0.667 V。背压作用下的电压增量是无背压作用下的5.13倍。在30kpa背压预负荷下,最优输出功率为12.3 mW。在背压作用下,输出功率提高到原来的237%。该样机可以直接为温度传感器供电,也可以为带有电容储能的磁开关供电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation on behavior of the backpressure based piezoelectric energy harvester driven by compressed air.
A piezoelectric energy harvester with backpressure pre-loaded is designed to investigate the performance that can be driven by the compressed air load in the pneumatic system. The power generation principle and microelement mechanics model are established, which can explain the principle that backpressure changes the internal energy of materials. The backpressure affects the internal stress of materials. The electromechanical coupling coefficient can be adjusted by the backpressure. The power generation obviously changes as the electromechanical coupling coefficient is adjusted. An experimental testing system is established, and the experimental results are analyzed to prove the effect of backpressure on the output power. There is a linear relationship between the peak voltage and backpressure. When the backpressure increases every 1 kPa, the voltage increases by 0.667 V. The voltage increment under backpressure is 5.13 times that without backpressure. The optimal output power is 12.3 mW in 30 kPa backpressure pre-load. The output power increases to the original 237% under the backpressure. The prototype can directly supply energy to the temperature sensor, and it can supply power to a magnetic switch with capacitor energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信