一种高效的基于神经网络的异构网络预测方案

K. Hosny, Marwa M. Khashaba, Walid I. Khedr, F. Amer
{"title":"一种高效的基于神经网络的异构网络预测方案","authors":"K. Hosny, Marwa M. Khashaba, Walid I. Khedr, F. Amer","doi":"10.4018/ijskd.2020040104","DOIUrl":null,"url":null,"abstract":"Inmobilewirelessnetworks,thechallengeofprovidingfullmobilitywithoutaffectingthequalityof service(QoS)isbecomingessential.Thesechallengescanbeovercomeusinghandoverprediction. Theprocessofdeterminingthenextstationwhichmobileuserdesirestotransferitsdataconnection canbetermedashandoverprediction.Anewproposedpredictionschemeispresentedinthisarticle dependentonscanningallsignalqualitybetweenthemobileuserandallneighboringstationsinthe surroundingareas.Additionally,theproposedschemeefficiencyisenhancedessentiallyforminimizing theredundanthandover(unnecessaryhandovers)numbers.BothWLANandlongtermevolution (LTE)networksareusedintheproposedschemewhichisevaluatedusingvariousscenarioswith severalnumbersandlocationsofmobileusersandwithdifferentnumbersandlocationsofWLAN accesspointandLTEbasestation,allrandomly.Theproposedpredictionschemeachievesasuccess rateofupto99%inseveralscenariosconsistentwithLTE-WLANarchitecture.Tounderstandthe networkcharacteristicsforenhancingefficiencyandincreasingthehandoversuccessfulpercentage especiallywithmobilestationhighspeeds,aneuralnetworkmodelisused.Usingthetrainednetwork, itcanpredictthenexttargetstationforheterogeneousnetworkhandoverpoints.Theproposedneural network-basedschemeaddedasignificantimprovementintheaccuracyratiocomparedtotheexisting schemesusingonlythereceivedsignalstrength(RSS)asaparameterinpredictingthenextstation. Itachievesaremarkableimprovementinsuccessfulpercentageratioupto5%comparedwithusing onlyRSS.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"24 1","pages":"63-76"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Efficient Neural Network-Based Prediction Scheme for Heterogeneous Networks\",\"authors\":\"K. Hosny, Marwa M. Khashaba, Walid I. Khedr, F. Amer\",\"doi\":\"10.4018/ijskd.2020040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inmobilewirelessnetworks,thechallengeofprovidingfullmobilitywithoutaffectingthequalityof service(QoS)isbecomingessential.Thesechallengescanbeovercomeusinghandoverprediction. Theprocessofdeterminingthenextstationwhichmobileuserdesirestotransferitsdataconnection canbetermedashandoverprediction.Anewproposedpredictionschemeispresentedinthisarticle dependentonscanningallsignalqualitybetweenthemobileuserandallneighboringstationsinthe surroundingareas.Additionally,theproposedschemeefficiencyisenhancedessentiallyforminimizing theredundanthandover(unnecessaryhandovers)numbers.BothWLANandlongtermevolution (LTE)networksareusedintheproposedschemewhichisevaluatedusingvariousscenarioswith severalnumbersandlocationsofmobileusersandwithdifferentnumbersandlocationsofWLAN accesspointandLTEbasestation,allrandomly.Theproposedpredictionschemeachievesasuccess rateofupto99%inseveralscenariosconsistentwithLTE-WLANarchitecture.Tounderstandthe networkcharacteristicsforenhancingefficiencyandincreasingthehandoversuccessfulpercentage especiallywithmobilestationhighspeeds,aneuralnetworkmodelisused.Usingthetrainednetwork, itcanpredictthenexttargetstationforheterogeneousnetworkhandoverpoints.Theproposedneural network-basedschemeaddedasignificantimprovementintheaccuracyratiocomparedtotheexisting schemesusingonlythereceivedsignalstrength(RSS)asaparameterinpredictingthenextstation. Itachievesaremarkableimprovementinsuccessfulpercentageratioupto5%comparedwithusing onlyRSS.\",\"PeriodicalId\":13656,\"journal\":{\"name\":\"Int. J. Sociotechnology Knowl. Dev.\",\"volume\":\"24 1\",\"pages\":\"63-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Sociotechnology Knowl. Dev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijskd.2020040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.2020040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

Inmobilewirelessnetworks,thechallengeofprovidingfullmobilitywithoutaffectingthequalityof service_ (QoS)isbecomingessential.Thesechallengescanbeovercomeusinghandoverprediction。Theprocessofdeterminingthenextstationwhichmobileuserdesirestotransferitsdataconnection canbetermedashandoverprediction。Anewproposedpredictionschemeispresentedinthisarticle dependentonscanningallsignalqualitybetweenthemobileuserandallneighboringstationsinthe surroundingareas。Additionally、theproposedschemeefficiencyisenhancedessentiallyforminimizing theredundanthandover(unnecessaryhandovers)numbers。BothWLANandlongtermevolution (LTE)networksareusedintheproposedschemewhichisevaluatedusingvariousscenarioswith severalnumbersandlocationsofmobileusersandwithdifferentnumbersandlocationsofWLAN accesspointandLTEbasestation、allrandomly。Theproposedpredictionschemeachievesasuccess rateofupto99%inseveralscenariosconsistentwithLTE-WLANarchitecture。Tounderstandthe networkcharacteristicsforenhancingefficiencyandincreasingthehandoversuccessfulpercentage especiallywithmobilestationhighspeeds,aneuralnetworkmodelisused。Usingthetrainednetwork, itcanpredictthenexttargetstationforheterogeneousnetworkhandoverpoints。Theproposedneural network-basedschemeaddedasignificantimprovementintheaccuracyratiocomparedtotheexisting schemesusingonlythereceivedsignalstrength(RSS)asaparameterinpredictingthenextstation。Itachievesaremarkableimprovementinsuccessfulpercentageratioupto5%comparedwithusing onlyRSS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Neural Network-Based Prediction Scheme for Heterogeneous Networks
Inmobilewirelessnetworks,thechallengeofprovidingfullmobilitywithoutaffectingthequalityof service(QoS)isbecomingessential.Thesechallengescanbeovercomeusinghandoverprediction. Theprocessofdeterminingthenextstationwhichmobileuserdesirestotransferitsdataconnection canbetermedashandoverprediction.Anewproposedpredictionschemeispresentedinthisarticle dependentonscanningallsignalqualitybetweenthemobileuserandallneighboringstationsinthe surroundingareas.Additionally,theproposedschemeefficiencyisenhancedessentiallyforminimizing theredundanthandover(unnecessaryhandovers)numbers.BothWLANandlongtermevolution (LTE)networksareusedintheproposedschemewhichisevaluatedusingvariousscenarioswith severalnumbersandlocationsofmobileusersandwithdifferentnumbersandlocationsofWLAN accesspointandLTEbasestation,allrandomly.Theproposedpredictionschemeachievesasuccess rateofupto99%inseveralscenariosconsistentwithLTE-WLANarchitecture.Tounderstandthe networkcharacteristicsforenhancingefficiencyandincreasingthehandoversuccessfulpercentage especiallywithmobilestationhighspeeds,aneuralnetworkmodelisused.Usingthetrainednetwork, itcanpredictthenexttargetstationforheterogeneousnetworkhandoverpoints.Theproposedneural network-basedschemeaddedasignificantimprovementintheaccuracyratiocomparedtotheexisting schemesusingonlythereceivedsignalstrength(RSS)asaparameterinpredictingthenextstation. Itachievesaremarkableimprovementinsuccessfulpercentageratioupto5%comparedwithusing onlyRSS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信