K. Hosny, Marwa M. Khashaba, Walid I. Khedr, F. Amer
{"title":"一种高效的基于神经网络的异构网络预测方案","authors":"K. Hosny, Marwa M. Khashaba, Walid I. Khedr, F. Amer","doi":"10.4018/ijskd.2020040104","DOIUrl":null,"url":null,"abstract":"Inmobilewirelessnetworks,thechallengeofprovidingfullmobilitywithoutaffectingthequalityof service(QoS)isbecomingessential.Thesechallengescanbeovercomeusinghandoverprediction. Theprocessofdeterminingthenextstationwhichmobileuserdesirestotransferitsdataconnection canbetermedashandoverprediction.Anewproposedpredictionschemeispresentedinthisarticle dependentonscanningallsignalqualitybetweenthemobileuserandallneighboringstationsinthe surroundingareas.Additionally,theproposedschemeefficiencyisenhancedessentiallyforminimizing theredundanthandover(unnecessaryhandovers)numbers.BothWLANandlongtermevolution (LTE)networksareusedintheproposedschemewhichisevaluatedusingvariousscenarioswith severalnumbersandlocationsofmobileusersandwithdifferentnumbersandlocationsofWLAN accesspointandLTEbasestation,allrandomly.Theproposedpredictionschemeachievesasuccess rateofupto99%inseveralscenariosconsistentwithLTE-WLANarchitecture.Tounderstandthe networkcharacteristicsforenhancingefficiencyandincreasingthehandoversuccessfulpercentage especiallywithmobilestationhighspeeds,aneuralnetworkmodelisused.Usingthetrainednetwork, itcanpredictthenexttargetstationforheterogeneousnetworkhandoverpoints.Theproposedneural network-basedschemeaddedasignificantimprovementintheaccuracyratiocomparedtotheexisting schemesusingonlythereceivedsignalstrength(RSS)asaparameterinpredictingthenextstation. Itachievesaremarkableimprovementinsuccessfulpercentageratioupto5%comparedwithusing onlyRSS.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"24 1","pages":"63-76"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Efficient Neural Network-Based Prediction Scheme for Heterogeneous Networks\",\"authors\":\"K. Hosny, Marwa M. Khashaba, Walid I. Khedr, F. Amer\",\"doi\":\"10.4018/ijskd.2020040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inmobilewirelessnetworks,thechallengeofprovidingfullmobilitywithoutaffectingthequalityof service(QoS)isbecomingessential.Thesechallengescanbeovercomeusinghandoverprediction. Theprocessofdeterminingthenextstationwhichmobileuserdesirestotransferitsdataconnection canbetermedashandoverprediction.Anewproposedpredictionschemeispresentedinthisarticle dependentonscanningallsignalqualitybetweenthemobileuserandallneighboringstationsinthe surroundingareas.Additionally,theproposedschemeefficiencyisenhancedessentiallyforminimizing theredundanthandover(unnecessaryhandovers)numbers.BothWLANandlongtermevolution (LTE)networksareusedintheproposedschemewhichisevaluatedusingvariousscenarioswith severalnumbersandlocationsofmobileusersandwithdifferentnumbersandlocationsofWLAN accesspointandLTEbasestation,allrandomly.Theproposedpredictionschemeachievesasuccess rateofupto99%inseveralscenariosconsistentwithLTE-WLANarchitecture.Tounderstandthe networkcharacteristicsforenhancingefficiencyandincreasingthehandoversuccessfulpercentage especiallywithmobilestationhighspeeds,aneuralnetworkmodelisused.Usingthetrainednetwork, itcanpredictthenexttargetstationforheterogeneousnetworkhandoverpoints.Theproposedneural network-basedschemeaddedasignificantimprovementintheaccuracyratiocomparedtotheexisting schemesusingonlythereceivedsignalstrength(RSS)asaparameterinpredictingthenextstation. Itachievesaremarkableimprovementinsuccessfulpercentageratioupto5%comparedwithusing onlyRSS.\",\"PeriodicalId\":13656,\"journal\":{\"name\":\"Int. J. Sociotechnology Knowl. Dev.\",\"volume\":\"24 1\",\"pages\":\"63-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Sociotechnology Knowl. Dev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijskd.2020040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.2020040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5