{"title":"广义灰色布朗运动局部时间:存在性和弱逼近","authors":"J. D. da Silva, M. Erraoui","doi":"10.1080/17442508.2014.945451","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the class of generalized grey Brownian motions (ggBms) (, ). We show that ggBm admits different representations in terms of certain known processes, such as fractional Brownian motion, multivariate elliptical distribution or as a subordination. We establish almost-sure weak convergence of the increments of in the measure space . We also obtain weak convergence of the weighted power variation of process . Using the Berman criterion we show that admits a -square integrable local time almost surely ( denoting Lebesgue measure). Moreover, we prove that this local time can be weak-approximated by the number of crossings , of level x, of the convolution approximation of ggBm.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"57 1","pages":"347 - 361"},"PeriodicalIF":0.8000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Generalized grey Brownian motion local time: existence and weak approximation\",\"authors\":\"J. D. da Silva, M. Erraoui\",\"doi\":\"10.1080/17442508.2014.945451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the class of generalized grey Brownian motions (ggBms) (, ). We show that ggBm admits different representations in terms of certain known processes, such as fractional Brownian motion, multivariate elliptical distribution or as a subordination. We establish almost-sure weak convergence of the increments of in the measure space . We also obtain weak convergence of the weighted power variation of process . Using the Berman criterion we show that admits a -square integrable local time almost surely ( denoting Lebesgue measure). Moreover, we prove that this local time can be weak-approximated by the number of crossings , of level x, of the convolution approximation of ggBm.\",\"PeriodicalId\":49269,\"journal\":{\"name\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"volume\":\"57 1\",\"pages\":\"347 - 361\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2014.945451\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.945451","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Generalized grey Brownian motion local time: existence and weak approximation
In this paper we investigate the class of generalized grey Brownian motions (ggBms) (, ). We show that ggBm admits different representations in terms of certain known processes, such as fractional Brownian motion, multivariate elliptical distribution or as a subordination. We establish almost-sure weak convergence of the increments of in the measure space . We also obtain weak convergence of the weighted power variation of process . Using the Berman criterion we show that admits a -square integrable local time almost surely ( denoting Lebesgue measure). Moreover, we prove that this local time can be weak-approximated by the number of crossings , of level x, of the convolution approximation of ggBm.
期刊介绍:
Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects.
Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly.
In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.