指标1的线性随机微分代数方程的伴随方程和Lyapunov正则性

Pub Date : 2014-08-05 DOI:10.1080/17442508.2013.879141
N. D. Cong, S. Siegmund, N. The
{"title":"指标1的线性随机微分代数方程的伴随方程和Lyapunov正则性","authors":"N. D. Cong, S. Siegmund, N. The","doi":"10.1080/17442508.2013.879141","DOIUrl":null,"url":null,"abstract":"We introduce a concept of adjoint equation and Lyapunov regularity of a stochastic differential algebraic Equation (SDAE) of index 1. The notion of adjoint SDAE is introduced in a similar way as in the deterministic differential algebraic equation case. We prove a multiplicative ergodic theorem for the adjoint SDAE and the adjoint Lyapunov spectrum. Employing the notion of adjoint equation and Lyapunov spectrum of an SDAE, we are able to define Lyapunov regularity of SDAEs. Some properties and an example of a metal oxide semiconductor field-effect transistor ring oscillator under thermal noise are discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adjoint equation and Lyapunov regularity for linear stochastic differential algebraic equations of index 1\",\"authors\":\"N. D. Cong, S. Siegmund, N. The\",\"doi\":\"10.1080/17442508.2013.879141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a concept of adjoint equation and Lyapunov regularity of a stochastic differential algebraic Equation (SDAE) of index 1. The notion of adjoint SDAE is introduced in a similar way as in the deterministic differential algebraic equation case. We prove a multiplicative ergodic theorem for the adjoint SDAE and the adjoint Lyapunov spectrum. Employing the notion of adjoint equation and Lyapunov spectrum of an SDAE, we are able to define Lyapunov regularity of SDAEs. Some properties and an example of a metal oxide semiconductor field-effect transistor ring oscillator under thermal noise are discussed.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2014-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2013.879141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2013.879141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引入指标1的随机微分代数方程(SDAE)的伴随方程和Lyapunov正则性概念。伴随SDAE的概念以与确定性微分代数方程类似的方式引入。我们证明了伴随SDAE和伴随Lyapunov谱的一个乘法遍历定理。利用伴随方程和Lyapunov谱的概念,我们可以定义SDAE的Lyapunov正则性。讨论了金属氧化物半导体场效应晶体管环振荡器在热噪声作用下的一些特性,并给出了一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Adjoint equation and Lyapunov regularity for linear stochastic differential algebraic equations of index 1
We introduce a concept of adjoint equation and Lyapunov regularity of a stochastic differential algebraic Equation (SDAE) of index 1. The notion of adjoint SDAE is introduced in a similar way as in the deterministic differential algebraic equation case. We prove a multiplicative ergodic theorem for the adjoint SDAE and the adjoint Lyapunov spectrum. Employing the notion of adjoint equation and Lyapunov spectrum of an SDAE, we are able to define Lyapunov regularity of SDAEs. Some properties and an example of a metal oxide semiconductor field-effect transistor ring oscillator under thermal noise are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信